【題目】如圖,∠ABC=ACB,ADBD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠AFC,以下結(jié)論:①ADBC;②∠ACB=2ADB;③∠ADC=90°—∠ABD;④∠BDC=BAC,其中正確的結(jié)論有_____________。

【答案】①②③④

【解析】

根據(jù)角平分線定義得出∠ABC2ABD2DBC,∠EAC2EAD,∠ACF2DCF,根據(jù)三角形的內(nèi)角和定理得出∠BAC+∠ABC+∠ACB180°,根據(jù)三角形外角性質(zhì)得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根據(jù)已知結(jié)論逐步推理,即可判斷各項(xiàng).

解:∵AD平分∠EAC,

∴∠EAC2EAD,

∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,

∴∠EAD=∠ABC,

ADBC,∴①正確;

ADBC,

∴∠ADB=∠DBC,

BD平分∠ABC,∠ABC=∠ACB,

∴∠ABC=∠ACB2DBC,

∴∠ACB2ADB,∴②正確;

AD平分∠EAC,CD平分∠ACF,

∴∠DACEAC,∠DCAACF,

∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC180°,

∴∠ADC180°(∠DAC+∠ACD

180°(∠EAC+∠ACF

180°(∠ABC+∠ACB+∠ABC+∠BAC

180°180°+ABC

90°ABC

90°—ABD,∴③正確;

∵∠ACF2DCF,∠ACF=∠BAC+∠ABC,∠ABC2DBC,∠DCF=∠DBC+∠BDC,

∴∠BAC2BDC,∴④正確,

故答案為:①②③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前微信支付寶、共享單車(chē)網(wǎng)購(gòu)給我們的生活帶來(lái)了很多便利,初二數(shù)學(xué)小組在校內(nèi)對(duì)你最認(rèn)可的四大新生事物進(jìn)行調(diào)查,隨機(jī)調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

1)根據(jù)圖中的信息求出_______,_______;

2)請(qǐng)你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全,并計(jì)算扇形統(tǒng)計(jì)圖中支付寶部分所對(duì)應(yīng)的圓心角的度數(shù)為_____;

3)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)估算全校2000名學(xué)生中,大約有多少人最認(rèn)可微信這一新生事物?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

問(wèn)題:現(xiàn)有5個(gè)邊長(zhǎng)為1的正方形,排列形式如圖①,請(qǐng)把它們分割后拼接成一個(gè)新的正方形,要求:畫(huà)出分割線并在正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長(zhǎng)均為1)中用實(shí)線畫(huà)出拼接成的新正方形.小東同學(xué)的做法是:設(shè)新正方形的邊長(zhǎng)為xx0),依題意,割補(bǔ)前后圖形的面積相等,有x25,解得,由此可知新正方形的邊長(zhǎng)等于兩個(gè)小正方形組成的矩形對(duì)角線的長(zhǎng),于是,畫(huà)出如圖②所示的分割線,拼出如圖③所示的新正方形.

請(qǐng)你參考小東同學(xué)的做法,解決如下問(wèn)題:

現(xiàn)有10個(gè)邊長(zhǎng)為1的正方形,排列形式如圖④,請(qǐng)把它們分割后拼接成一個(gè)新的正方形,要求:在圖④中畫(huà)出分割線,并在圖⑤的正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長(zhǎng)均為1)中用實(shí)線畫(huà)出拼接成的新正方形.(說(shuō)明:直接畫(huà)出圖形,不要求寫(xiě)分析過(guò)程.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)與x軸交于A﹣1,0),B4,0)兩點(diǎn),與y軸交于點(diǎn)C02),點(diǎn)Mmn)是拋物線上一動(dòng)點(diǎn),位于對(duì)稱(chēng)軸的左側(cè),并且不在坐標(biāo)軸上,過(guò)點(diǎn)Mx軸的平行線交y軸于點(diǎn)Q,交拋物線于另一點(diǎn)E,直線BMy軸于點(diǎn)F

1)求拋物線的解析式,并寫(xiě)出其頂點(diǎn)坐標(biāo);

2)當(dāng)SMFQSMEB=13時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為長(zhǎng)方形的對(duì)角線,將邊沿折疊,使點(diǎn)落在上的點(diǎn).將邊沿折疊,使點(diǎn)落在上的點(diǎn)處。

求證:四邊形是平行四邊形;

,求四邊形的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景區(qū)商店以2元的批發(fā)價(jià)進(jìn)了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個(gè)定價(jià)3元,每天可以能賣(mài)出500件,而且定價(jià)每上漲0.1元,其銷(xiāo)售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價(jià)不能超過(guò)批發(fā)價(jià)的2.5倍.

1)當(dāng)每個(gè)紀(jì)念品定價(jià)為3.5元時(shí),商店每天能賣(mài)出________件;

2)如果商店要實(shí)現(xiàn)每天800元的銷(xiāo)售利潤(rùn),那該如何定價(jià)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(重溫舊知)圓內(nèi)接四邊形的內(nèi)角具有特殊的性質(zhì).

如圖①,四邊形ABCD是⊙O的內(nèi)接四邊形,若ABBD,∠ABD50°,則∠BCD_______°.

(提出問(wèn)題)圓內(nèi)接四邊形的邊會(huì)有特殊性質(zhì)嗎?

如圖②,某數(shù)學(xué)興趣小組進(jìn)行深入研究發(fā)現(xiàn):ABCD+BCDA=ACBD,請(qǐng)按他們的思路繼續(xù)完成證明.

證明:如圖③,作∠BAE=∠CAD,交BD于點(diǎn)E.

∵∠BAE=∠CAD,∠ABD=∠ACD,

∴△ABE∽△ACD

ABCDACBE

(應(yīng)用遷移)如圖,已知等邊△ABC外接圓⊙O,點(diǎn)P上一點(diǎn),且PB=,PC=1,求PA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用勾股定理可以在數(shù)軸上畫(huà)出表示的點(diǎn),請(qǐng)依據(jù)以下思路完成畫(huà)圖,并保留畫(huà)圖痕跡:

第一步:(計(jì)算)嘗試滿足,使其中a,b都為正整數(shù).你取的正整數(shù)a=____b=________;

第二步:(畫(huà)長(zhǎng)為的線段)以第一步中你所取的正整數(shù)a,b為兩條直角邊長(zhǎng)畫(huà)Rt△OEF,使O為原點(diǎn),點(diǎn)E落在數(shù)軸的正半軸上, ,則斜邊OF的長(zhǎng)即為.

請(qǐng)?jiān)谙旅娴臄?shù)軸上畫(huà)圖:(第二步不要求尺規(guī)作圖,不要求寫(xiě)畫(huà)法)

第三步:(畫(huà)表示的點(diǎn))在下面的數(shù)軸上畫(huà)出表示的點(diǎn)M,并描述第三步的畫(huà)圖步驟:_______________________________________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一些數(shù)排列成下表中的四列:

1

2

3

4

1

1

4

5

10

2

4

8

10

12

3

9

12

15

14

1)第4行第1列的數(shù)是多少?直接寫(xiě)出答案;

2)第17行的四個(gè)數(shù)之和是多少?請(qǐng)寫(xiě)出適當(dāng)?shù)倪^(guò)程;

3)數(shù)100所在的行和列分別是多少?直接寫(xiě)出答案.

查看答案和解析>>

同步練習(xí)冊(cè)答案