【題目】把兩個大小不同的等腰直角三角板按照一定的規(guī)則放置:“在同一平面內(nèi)將直角頂點(diǎn)疊合”.
(1)圖1是一種放置位置及由它抽象出的幾何圖形,、、在同一條直線上,聯(lián)結(jié). 請找出圖中的全等三角形(結(jié)論中不含未標(biāo)識的字母),并說明理由;
(2)圖2也是一種放置位置及由它抽象出的幾何圖形,、、在同一條直線上,聯(lián)結(jié)、,并延長與交于點(diǎn).請找出線段和的位置關(guān)系,并說明理由;
(3)請你:
①畫出一個符合放置規(guī)則且不同于圖1和圖2所放位置的幾何圖形;
②寫出你所畫幾何圖形中線段和的位置和數(shù)量關(guān)系;
③上面第②題中的結(jié)論在按照規(guī)則放置所抽象出的幾何圖形中都存在嗎?
【答案】(1),證明詳見解析;(2),證明詳見解析;(3)①詳見解析;②,;③存在
【解析】
(1)可證∠BAD=∠CAE,運(yùn)用SAS證明△ABD與△ACE全等;
(2)根據(jù)SAS證明△ABD與△ACE全等,得BD=CE;∠ADB=∠AEC.根據(jù)三角形內(nèi)角和定理證明∠CFD=∠CAE=90°可判斷位置關(guān)系;
(3)當(dāng)△ABC繞點(diǎn)A旋轉(zhuǎn)與△ADE重疊時結(jié)論仍成立.
(1)
是等腰直角三角形
,
同理,
即
在和中
(2)
證明如下:在和中
即
(3)①如圖,當(dāng)△ABC繞點(diǎn)A旋轉(zhuǎn)與△ADE重疊時
②,
③存在,證明如下:
∵
∴
在和中
∴
∵
∴,又∠ADE=45°,
∴=90°,
故,存在.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線圖象的一部分,拋物線的頂點(diǎn)坐標(biāo),與軸的一個交點(diǎn),直線與拋物線交于,兩點(diǎn),下列結(jié)論:
①;②;③方程有兩個相等的實(shí)數(shù)根;
④拋物線與軸的另一個交點(diǎn)是;⑤當(dāng)時,有,
其中正確的序號是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,-1).
(1)請以y軸為對稱軸,畫出與△ABC對稱的△A1B1C1,并直接寫出點(diǎn)A1、B1、C1的坐標(biāo);
(2)△ABC的面積是 .
(3)點(diǎn)P(a+1,b-1)與點(diǎn)C關(guān)于x軸對稱,則a= ,b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,、、在同一條直線上,連接.
(1)請找出圖2中的全等三角形,并說明理由(說明:結(jié)論中不得含有圖中未標(biāo)識的字母);
(2)與垂直嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦了一次趣味數(shù)學(xué)競賽,滿分100分,學(xué)生得分均為整數(shù),達(dá)到成績60分及以上為合格,達(dá)到90分及以上為優(yōu)秀,這次競賽中,甲乙兩組學(xué)生成績?nèi)缦,甲組:30,60,60,60,60,60,70,90,90,100 ;乙組:50,60,60,60,70,70,70,70,80,90.
(1)以上成績統(tǒng)計分析表中a=______分,b=______分,c=_______分;
組別 | 平均數(shù) | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | 68分 | a | 376 | 30% | |
乙組 | b | c | 90% |
(2)小亮同學(xué)說:這次競賽我得了70分,在我們小組中屬于中游略偏上,觀察上面表格判斷,小亮可能是甲乙哪個組的學(xué)生?并說明理由
(3)計算乙組的方差和優(yōu)秀率,如果你是該校數(shù)學(xué)競賽的教練員,現(xiàn)在需要你選一組同學(xué)代表學(xué)校參加復(fù)賽,你會選擇哪一組?并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)如圖,平行四邊形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中點(diǎn),E是邊AD上的動點(diǎn),EG的延長線與BC的延長線交于點(diǎn)F,連接CE,DF.
(1)求證:四邊形CEDF是平行四邊形;
(2)①當(dāng)AE= cm時,四邊形CEDF是矩形;
②當(dāng)AE= cm時,四邊形CEDF是菱形;(直接寫出答案,不需要說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+x+2與直線y=x+2相交于點(diǎn)C和D,點(diǎn)P是拋物線在第一象限內(nèi)的點(diǎn),它的橫坐標(biāo)為m,過點(diǎn)P作PE⊥x軸,交CD于點(diǎn)F.
(1)求點(diǎn)C和D的坐標(biāo);
(2)求拋物線與x軸的交點(diǎn)坐標(biāo);
(3)如果以P、C、O、F為頂點(diǎn)的四邊形是平行四邊形,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題的是( )
A.兩邊和一角對應(yīng)相等,兩三角形全等
B.兩腰對應(yīng)相等的兩等腰三角形全等
C.兩角和一邊對應(yīng)相等,兩三角形全等
D.兩銳角對應(yīng)相等的兩直角三角形全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料閱讀:
若a是正整數(shù),則長度為的線段是有可能表示正方形網(wǎng)格中兩個格點(diǎn)之間的距離(設(shè)小正方形的長度為單位1).如圖1所示,A、B兩點(diǎn)之間的距離就是.
(1)在圖1中以A為一個端點(diǎn),畫出一條長為的線段AC;
(2)(空格處填正整數(shù),兩組數(shù)要求不一樣),并根據(jù)你填的數(shù)字,在圖2中畫出兩種對應(yīng)的線段,其長度均為;
(3)利用材料所給的方法,直接寫出三邊長分別為、、的三角形的面積:__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com