【題目】若a>b,則下列說法中,錯誤的是( 。
A.a+1>b+1B.a﹣>b﹣
C.2a﹣1>2b﹣1D.﹣5a+1>﹣5b+1
【答案】D
【解析】
根據(jù)不等式基本性質(zhì)逐一判斷即可.
A、根據(jù)不等式性質(zhì)1,不等式a>b兩邊都加1可得a+1>b+1,原變形正確,此選項不符合題意;
B、根據(jù)不等式性質(zhì)3,不等式a>b兩邊都減去可得a﹣>b﹣,原變形正確,此選項不符合題意;
C、根據(jù)不等式性質(zhì)2和性質(zhì)1,不等式a>b兩邊先乘以2得2a>2b,再兩邊都減去1可得2a﹣1>2b﹣1,原變形正確,此選項不符合題意;
D、根據(jù)不等式性質(zhì)2,不等式a>b兩邊都乘以﹣5可得﹣5a<﹣5b,再兩邊都加上1可得﹣5a+1<﹣5b+1,原變形錯誤,此選項符合題意;
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點N,交AC于點M,連接MB.
(1)若∠ABC=70°,則∠NMA的度數(shù)是 度.
(2)若AB=8cm,△MBC的周長是14cm.
①求BC的長度;
②若點P為直線MN上一點,請你直接寫出△PBC周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】氣溫隨著高度的升高而下降,下降的一般規(guī)律是從地面到高空11 km處(包括11 km),每升高1 km氣溫下降6 ℃;高于11 km時,氣溫不再發(fā)生變化,地面的氣溫為20 ℃時,設(shè)高空中x km處的氣溫為y ℃.
(1)當(dāng)0≤x≤11時,求y和x之間的關(guān)系式;
(2)畫出氣溫隨高度(包括高于11 km)變化的圖像;
(3)在離地面4.5 km及14 km的高空處,氣溫分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(﹣7,1),B(1,1),C(1,7).線段DE的端點坐標(biāo)是D(7,﹣1),E(﹣1,﹣7).
(1)試說明如何平移線段AC,使其與線段ED重合;
(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn),使AC的對應(yīng)邊為DE,請直接寫出點B的對應(yīng)點F的坐標(biāo);
(3)畫出(2)中的△DEF,并和△ABC同時繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自動化車間計劃生產(chǎn)480個零件,當(dāng)生產(chǎn)任務(wù)完成一半時,停止生產(chǎn)進(jìn)行自動化程序軟件升級,用時20分鐘,恢復(fù)生產(chǎn)后工作效率比原來提高了,結(jié)果完成任務(wù)時比原計劃提前了40分鐘,求軟件升級后每小時生產(chǎn)多少個零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.
(1)求證:△ABC≌△ADE;
(2)求∠FAE的度數(shù);
(3)求證:CD=2BF+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=10,E為AB上一點,且AE= AB=a,連結(jié)DE,F(xiàn)是DE中點,連結(jié)BF,以BF為直徑作⊙O.
(1)用a的代數(shù)式表示DE2= , BF2=;
(2)求證:⊙O必過BC的中點;
(3)若⊙O與矩形ABCD各邊所在的直線相切時,求a的值;
(4)作A關(guān)于直線BF的對稱點A′,若A′落在矩形ABCD內(nèi)部(不包括邊界),則a的取值范圍 . (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC=5,cos∠ABC=0.6,將△ABC繞點C順時針旋轉(zhuǎn),得到△A1B1C.
(1)如圖1,當(dāng)點B1在線段BA延長線上時.①求證:BB1∥CA1;②求△AB1C的面積;
(2)如圖2,點E是BC邊的中點,點F為線段AB上的動點,在△ABC繞點C順時針旋轉(zhuǎn)過程中,點F的對應(yīng)點是F1 , 求線段EF1長度的最大值與最小值的差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com