【題目】如圖,為矩形邊上一點(diǎn),連接,將沿翻折得到,過點(diǎn)作FG⊥BC于點(diǎn)G,若AB=4,FG=1,則AE的長度為____.
【答案】
【解析】
過點(diǎn)E作EM⊥BC于點(diǎn)M,過F作FN⊥EM于點(diǎn)N. 設(shè)AE=x,分別解RT△BFG和RT△EFN可得AE的長.
解:如圖,過點(diǎn)E作EM⊥BC于點(diǎn)M,過F作FN⊥EM于點(diǎn)N.
則有四邊形MGFN、ABME是矩形,NF=MG.MN=FG=1,BM=AE.設(shè)AE=x,由翻折的性質(zhì)知BF=AB=4,
在RT△BFG中,BF=4,FG=1,由勾股定理得BG=,
在RT△EFN中,EN=ME-MN=4-1=3,FN=MG=BG-BM=-X,EF=AE=x.
由勾股定理得方程:
解得x=
所以AE的長度為
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,DA、DC分別切⊙O于點(diǎn)A,C,且AB=AD.
(1)求tan∠AOD的值.
(2)AC,OD交于點(diǎn)E,連結(jié)BE.
①求∠AEB的度數(shù);
②連結(jié)BD交⊙O于點(diǎn)H,若BC=1,求CH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠ABC=70°
(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點(diǎn)D(保留作圖痕跡,不要求寫作法)
(2)在(1)的條件下,∠BDC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會(huì)嚴(yán)重影響學(xué)生對(duì)待學(xué)習(xí)的態(tài)度.為此我市教育部門對(duì)部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)我市近8000名八年級(jí)學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是☉O的直徑,點(diǎn)在☉O上,過點(diǎn)C的切線與AB的延長線交于點(diǎn)P,連接AC,過點(diǎn)O作OD⊥AC交☉O于點(diǎn)D,連接CD.若∠A=30°,PC=6,則CD的長為
A. B. C. 3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汽車專賣店銷售某種型號(hào)的汽車.已知該型號(hào)汽車的進(jìn)價(jià)為10萬元/輛,銷售一段時(shí)間后發(fā)現(xiàn):當(dāng)該型號(hào)汽車售價(jià)定為15萬元/輛時(shí),平均每周售出8輛;售價(jià)每降低0.5萬元,平均每周多售出2輛.
(1)若要平均每周售出汽車不低于15輛,該汽車的售價(jià)最多定為多少萬元?
(2)該店計(jì)劃下調(diào)售價(jià),盡可能增加銷量,減少庫存,但要確保平均每周的銷售利潤為40萬元,每輛汽車的售價(jià)定為多少合適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E是AD邊上的中點(diǎn),連接BE,并延長BE交CD的延長線于點(diǎn)F.
(1)證明:FD=AB;(2)當(dāng)平行四邊形ABCD的面積為8時(shí),求△FED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點(diǎn)E是△ABC的內(nèi)心,過點(diǎn)E作EF∥AB交AC于點(diǎn)F,則EF的長為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com