【題目】“校園手機”現(xiàn)象越來越受到社會的關(guān)注.小麗在“統(tǒng)計實習(xí)”活動中隨機調(diào)查了學(xué)校若干名學(xué)生家長對“中學(xué)生帶手機到學(xué)校”現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:
(1)求這次調(diào)查的家長總數(shù)及家長表示“無所謂”的人數(shù),并補全圖①;
(2)求圖②中表示家長“無所謂”的圓心角的度數(shù);
(3)從這次接受調(diào)查的家長中,隨機抽查一個,恰好是“不贊成”態(tài)度的家長的概率是多少.
【答案】
(1)解:家長總數(shù):200÷50%=400名,
表示“無所謂”人數(shù):400﹣200﹣16﹣400×26%=80名,補全圖①,
(2)解:80÷400×360°=72°
(3)解:16÷400=
【解析】(1)由圖象可以得出基本贊成的有200人占50%,可以求出總數(shù),由總數(shù)可以求出非常贊成的人數(shù)和無所謂的人數(shù).(2)由(1)的總數(shù)求出無所謂的百分比再乘以360°就可以求出圓心角的度數(shù).(3)這次受調(diào)查的家長不贊成的人數(shù)除以總數(shù)就是抽到恰好是“不贊成”態(tài)度的家長的概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家到學(xué)校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車沿著公路勻速行駛一段時間后到達學(xué)校,小明從家到學(xué)校行駛路程s(m)與時間t(min)的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于點F,連接BF.
(1)求證:CF=AD;
(2)若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若記y=f(x)= ,其中f(1)表示當(dāng)x=1時y的值, 即f(1)= = ;f( )表示當(dāng)x= 時y的值,即f( )= ;…;則f(1)+f(2)+f( )+f(3)+f( )+…+f(2011)+f( )= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)八年級一班準(zhǔn)備在“七一”組織參加紅色旅游,班長把全班48名同學(xué)對旅游地點的意向繪制成了扇形統(tǒng)計圖,其中“想去我市龍州縣紅八軍紀(jì)念館參加的學(xué)生數(shù)”的扇形圓心角為60°,則下列說法中正確的是( )
A.想去龍州縣紅八軍紀(jì)念館參加的學(xué)生占全班學(xué)生的60%
B.想去龍州縣紅八軍紀(jì)念館參觀的學(xué)生有12人
C.想去龍州縣紅八軍紀(jì)念館參觀的學(xué)生肯定最多
D.想去龍州縣紅八軍紀(jì)念館參觀的學(xué)生占全班學(xué)生的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的面積是63,D是BC上的一點,且BD:CD=2:1,DE∥AC交AB于E,延長DE到F,使FE:ED=2:1,則△CDF的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,CD為⊙O的直徑,點B在⊙O上,連接BC、BD,過點B的切線AE與CD的延長線交于點A,OE∥BD,交BC于點F,交AB于點E.
(1)求證:∠E=∠C;
(2)若⊙O的半徑為3,AD=2,試求AE的長;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題
(1)問題發(fā)現(xiàn):
如圖1,在正方形ABCD中,點E、F分別是邊BC、AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C,請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是 .
(2)拓展探究:
如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請出判斷判斷予以證明;
(3)類比延伸:
如圖3,若點E、F分別是BC、AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:運用“同一圖形的面積相等”可以證明一些含有線段的等式成立,這種解決問題的方法我們稱之為面積法.如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,點M為底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1、h2 , 連接AM,利用S△ABC=S△ABM+S△ACM , 可以得出結(jié)論:h=h1+h2 .
類比探究:在圖1中,當(dāng)點M在BC的延長線上時,猜想h、h1、h2之間的數(shù)量關(guān)系并證明你的結(jié)論.
拓展應(yīng)用:如圖2,在平面直角坐標(biāo)系中,有兩條直線l1:y= x+3,l2:y=﹣3x+3,
若l2上一點M到l1的距離是1,試運用“閱讀理解”和“類比探究”中獲得的結(jié)論,求出點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com