【題目】如圖,在射線BA,BC,AD,CD圍成的菱形ABCD中,∠ABC=60°,AB=6 ,O是射線BD上一點,⊙O與BA,BC都相切,與BO的延長線交于點M.過M作EF⊥BD交線段BA(或射線AD)于點E,交線段BC(或射線CD)于點F.以EF為邊作矩形EFGH,點G,H分別在圍成菱形的另外兩條射線上.
(1)求證:BO=2OM.
(2)設(shè)EF>HE,當矩形EFGH的面積為24 時,求⊙O的半徑.
(3)當HE或HG與⊙O相切時,求出所有滿足條件的BO的長.
【答案】
(1)
證明:如圖1所示:設(shè)⊙O切AB于點P,連接OP,則∠OPB=90°.
∵四邊形ABCD為菱形,
∴∠ABD= ∠ABC=30°.
∴OB=2OP.
∵OP=OM,
∴BO=2OP=2OM.
(2)
解:如圖2所示:設(shè)GH交BD于點N,連接AC,交BD于點Q.
∵四邊形ABCD是菱形,
∴AC⊥BD.
∴BD=2BQ=2ABcos∠ABQ= AB=18.
設(shè)⊙O的半徑為r,則OB=2r,MB=3r.
∵EF>HE,
∴點E,F(xiàn),G,H均在菱形的邊上.
①如圖2所示,當點E在AB上時.
在Rt△BEM中,EM=BMtan∠EBM= r.
由對稱性得:EF=2EM=2 r,ND=BM=3r.
∴MN=18﹣6r.
∴S矩形EFGH=EFMN=2 r(18﹣6r)=24 .
解得:r1=1,r2=2.
當r=1時,EF<HE,
∴r=1時,不合題意舍
當r=2時,EF>HE,
∴⊙O的半徑為2.
∴BM=3r=6.
如圖3所示:
當點E在AD邊上時.BM=3r,則MD=18﹣3r.
由對稱性可知:NB=MD=6.
∴MB=3r=18﹣6=12.
解得:r=4.
綜上所述,⊙O的半徑為2或4.
(3)
解:解設(shè)GH交BD于點N,⊙O的半徑為r,則BO=2r.
當點E在邊BA上時,顯然不存在HE或HG與⊙O相切.
①如圖4所示,點E在AD上時.
∵HE與⊙O相切,
∴ME=r,DM= r.
∴3r+ r=18.
解得:r=9﹣3 .
∴OB=18﹣6 .
②如圖5所示;
由圖形的對稱性得:ON=OM,BN=DM.
∴OB= BD=9.
③如圖6所示.
∵HG與⊙O相切時,MN=2r.
∵BN+MN=BM=3r.
∴BN=r.
∴DM= FM= GN=BN=r.
∴D與O重合.
∴BO=BD=18.
④如圖7所示:
∵HE與⊙O相切,
∴EM=r,DM= r.
∴3r﹣ r=18.
∴r=9+3 .
∴OB=2r=18+6 .
綜上所述,當HE或GH與⊙O相切時,OB的長為18﹣6 或9或18或18+6 .
【解析】(1)設(shè)⊙O切AB于點P,連接OP,由切線的性質(zhì)可知∠OPB=90°.先由菱形的性質(zhì)求得∠OBP的度數(shù),然后依據(jù)含30°直角三角形的性質(zhì)證明即可;
。2)設(shè)GH交BD于點N,連接AC,交BD于點Q.先依據(jù)特殊銳角三角函數(shù)值求得BD的長,設(shè)⊙O的半徑為r,則OB=2r,MB=3r.當點E在AB上時.在Rt△BEM中,依據(jù)特殊銳角三角函數(shù)值可得到EM的長(用含r的式子表示),由圖形的對稱性可得到EF、ND、BM的長(用含r的式子表示,從而得到MN=18﹣6r,接下來依據(jù)矩形的面積列方程求解即可;當點E在AD邊上時.BM=3r,則MD=18﹣3r,最后由MB=3r=12列方程求解即可;
。3)先根據(jù)題意畫出符合題意的圖形,
①如圖4所示,點E在AD上時,可求得DM= r,BM=3r,然后依據(jù)BM+MD=18,列方程求解即可;
、谌鐖D5所示;依據(jù)圖形的對稱性可知得到OB= BD;
、廴鐖D6所示,可證明D與O重合,從而可求得OB的長;
、苋鐖D7所示:先求得DM= r,OMB=3r,由BM﹣DM=DB列方程求解即可.本題主要考查的是四邊形的綜合應(yīng)用,解答本題主要應(yīng)用了菱形的性質(zhì)、切線的性質(zhì)、特殊銳角三角函數(shù)值的應(yīng)用、矩形的面積公式,根據(jù)題意畫出符合題意的圖形是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】某中學開通了互聯(lián)網(wǎng)家校合育教育平臺,為了解家長使用平臺的情況,學校將家長的使用情況分為”經(jīng)常使用”、“偶爾使用”“和“不使用”三種類型,借助該平臺大數(shù)據(jù)功能,匯總出該校八(1)班和八(2)班全體家長的使用情況,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖:
請根據(jù)圖中信息解答下列問題
(1)此次調(diào)查的家長總?cè)藬?shù)為 ;
(2)扇形統(tǒng)計圖中代表“不使用”類型的扇形圓心角的度數(shù)是 °,并補全條形統(tǒng)計圖;
(3)若該校八年級學生家長共有1200人,根據(jù)此次調(diào)查結(jié)果估計該校八年級中“經(jīng)常使用”類型的家長約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖象與x軸、y軸分別交于A、B兩點且與反比例函數(shù)的圖象在第一象限交于C點,CD⊥軸于D點,若∠CAD=,AB =,CD =
(1)求點A、B、D的坐標;
(2)求一次函數(shù)的解析式;
(3)反比例函數(shù)的解析式;
(4)求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在所給的網(wǎng)格圖中,完成下列各題(用直尺畫圖,否則不給分)
(1)畫出格點△ABC關(guān)于直線DE的對稱的△A1B1C1;
(2)在DE上畫出點P,使PA+PC最;
(3)在DE上畫出點Q,使QA﹣QB最大.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四點A,B,C,D,用圓規(guī)和無刻度的直尺按下列要求與步驟畫出圖形并計算:
(1)畫直線AB;
(2)畫射線DC;
(3)延長線段DA至點E,使AE=AB;(保留作圖痕跡)
(4)畫一點P,使點P既在直線AB上,又在線段CE上;
(5)若AB=2cm,AD=1cm,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某港口P位于東西方向的海岸線上,A、B兩艘輪船同時從港口P出發(fā),各自沿一固定方向航行,A輪船每小時航行12海里,B輪船每小時航行16海里.它們離開港口一個半小時后分別位于點R、Q處,且相距30海里.已知B輪船沿北偏東60°方向航行.
(1)A輪船沿哪個方向航行?請說明理由;
(2)請求出此時A輪船到海岸線的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知含字母m,n的代數(shù)式是: .
(1)化簡這個代數(shù)式.
(2)小明取m,n互為倒數(shù)的一對數(shù)值代入化簡的代數(shù)式中,恰好計算得代數(shù)式的值等于0.那么小明所取的字母n的值等于多少?
(3)聰明的小智從化簡的代數(shù)式中發(fā)現(xiàn),只要字母n取一個固定的數(shù),無論字母m取何數(shù),代數(shù)式的值恒為一個不變的數(shù),那么小智所取的字母n的值是多少呢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com