【題目】
(1)化簡: ;
(2)解方程: .
【答案】
(1)解:原式=4﹣(3﹣2 )+ =4﹣3+2 + =1+
(2)解:原方程去分母可化為2x(2x+5)﹣2(2x﹣5)=(2x﹣5)(2x+5),
展開,得4x2+10x﹣4x+10=4x2﹣25,
整理,得6x=﹣35,解得 .
檢驗:當 時,2x+5≠0,且2x﹣5≠0,
所以 是原分式方程的解
【解析】(1)首先進行化簡,把括號和絕對值號去掉,合并同類項;(2)首先找到公分母去分母,然后整理整式方程,求x的值,最后要進行檢驗.
【考點精析】本題主要考查了整數(shù)指數(shù)冪的運算性質(zhì)和二次根式的混合運算的相關(guān)知識點,需要掌握aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));二次根式的混合運算與實數(shù)中的運算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的(或先去括號)才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°,BD=4,CE= ,則△ABC的面積為( )
A.8
B.15
C.9
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-2x與直線y=kx+b相交于點A(a,2),并且直線y=kx+b經(jīng)過x軸上點B(2,0).
(1)求直線y=kx+b的解析式;
(2)求兩條直線與y軸圍成的三角形面積;
(3)直接寫出不等式(k+2)x+b≥0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,身高都為1.6米的小芳、小麗來到溪江公園,準備用她們所學(xué)的知識測算南塔的高度.如圖,小芳站在A處測得她看塔頂?shù)难鼋铅翞?5°,小麗站在B處(A、B與塔的軸心共線)測得她看塔頂?shù)难鼋铅聻?0°.她們又測出A、B兩點的距離為30米.假設(shè)她們的
眼睛離頭頂都為10cm,則可計算出塔高約為(結(jié)果精確到0.01,參考數(shù)據(jù): ≈1.414, ≈1.732)( )
A.36.21米
B.37.71米
C.40.98米
D.42.48米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列每組數(shù)分別是三根小木棒的長度,用它們能擺成三角形的是( )
A.1cm,2cm,2cmB.1cm,2cm,4cm
C.2cm,3cm,5cmD.5cm,6cm,12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn)
如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn),當點D恰好落在AB邊上時,填空:
①線段DE與AC的位置關(guān)系是_________;
②設(shè)△BDC的面積為S1,△AEC的面積為S2,則S1與S2的數(shù)量關(guān)系是____________.
(2)猜想論證
當△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.
(3)拓展探究
已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,DE//AB交BC于點E(如圖4).若在射線BA上存在點F,使,請直接寫出相應(yīng)的BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付給兩組費用共3520元;若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付給兩組費用共3480元,問:
(1)甲、乙兩組單獨工作一天,商店應(yīng)各付多少元?
(2)已知甲組單獨完成需要12天,乙組單獨完成需要24天,單獨請哪組,商店應(yīng)付費用較少?
(3)若裝修完后,商店每天可盈利200元,你認為如何安排施工有利用商店經(jīng)營?說說你的理由.(可以直接用(1)(2)中的已知條件)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大。
其中會隨點P的移動而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校要在圍墻旁建一個長方形的中藥材種植實習(xí)苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD.已知木欄總長為120米,設(shè)AB邊的長為x米,長方形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
(2)學(xué)校計劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計為如圖所示的兩個相外切的等圓,其圓心分別為O1和O2 , 且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學(xué)們參觀學(xué)習(xí).當(l)中S取得最值時,請問這個設(shè)計是否可行?若可行,求出圓的半徑;若不可行,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com