分析 根據(jù)∠B=90°,AC=5$\sqrt{2}$,BC=5,由勾股定理可得AB的長度,根據(jù)sinA=$\frac{BC}{AC}$,可以得到∠A的度數(shù),從而得到∠C的度數(shù).
解答 解:∵在△ABC中,∠B=90°,AC=5$\sqrt{2}$,BC=5,
∴AB=$\sqrt{A{C}^{2}-B{C}^{2}}=\sqrt{(5\sqrt{2})^{2}-{5}^{2}}$=$\sqrt{25}=5$.
∵sinA=$\frac{BC}{AC}$,BC=5,AC=5$\sqrt{2}$,
∴sinA=$\frac{\sqrt{2}}{2}$.
∴∠A=45°.
∴∠C=90°-∠A=90°-45°=45°.
即:AB=5,∠A=45°,∠C=45°.
點評 本題考查解直角三角形,解題的關鍵是明確直角三角形中,角角關系、邊邊關系、邊角關系.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com