【題目】為關(guān)注學(xué)生出行安全,調(diào)查了某班學(xué)生出行方式,調(diào)查結(jié)果分為四類:A﹣騎自行車,B﹣步行,C﹣坐社區(qū)巴士,D﹣其它,并將調(diào)査結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖,解答下列問題:

1)本次一共調(diào)査了多少名學(xué)生?

2C類女生有   名,D類男生有   名,并將條形統(tǒng)計圖補充完整.

3)若從被調(diào)查的A類和D類學(xué)生中分別隨機選取一位同學(xué)進行進一步調(diào)查,請用列表法或畫樹狀圖的方法求出所選同學(xué)中恰好是一位男同學(xué)和一位女同學(xué)的概率.

【答案】120;(23,1,見解析;(3

【解析】

1)根據(jù)題意用步行的人數(shù)除以所占的百分比即可得出調(diào)出的總?cè)藬?shù);

2)由題意用調(diào)查的總?cè)藬?shù)乘以所占的百分比,即可求出C類和D類的人數(shù),從而補全統(tǒng)計圖;

3)根據(jù)題意先畫出樹狀圖得出所以等情況數(shù)和恰好是一位男同學(xué)和一位女同學(xué)的情況數(shù),然后根據(jù)概率公式即可得出答案.

解:(1)本次調(diào)查的學(xué)生數(shù)=10÷50%20(名);

2C類女生數(shù)有20×25%23名;

D類男生數(shù)有20×150%25%15%)﹣11名,

條形統(tǒng)計圖為:

故答案為:31;

3)畫樹狀圖為:

共有6種等可能的結(jié)果數(shù),其中恰好是一位男同學(xué)和一位女同學(xué)的結(jié)果數(shù)為3種,

所以所選A,D兩類同學(xué)中恰好是一位男同學(xué)和一位女同學(xué)的概率是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為5,弦ABCD,AB=6,CD=8,則ABCD之間的距離是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象經(jīng)過點(2,-5),頂點坐標(biāo)為(-1,4),直線l的解析式為y=2x+m.

1)求拋物線的解析式;

2)若拋物線與直線l有兩個公共點,求的取值范圍;

3)若直線l與拋物線只有一個公共點P,求點P的坐標(biāo);

4)設(shè)拋物線與軸的交點分別為AB,求在(3)的條件下△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+8x軸交于A點,與y軸交于點B,動點PA點出發(fā),以每秒2個單位速度沿射線AO勻速運動,同時動點QB點出發(fā),以每秒1個單位的速度沿射線BA方向向點A勻速運動,當(dāng)一個點停止運動,另一個點也隨之停止運動,連接PQ,設(shè)運動的時間為t(秒).

1)用t的代數(shù)式表示AP= AQ=

2)當(dāng)t為何值時,PQOB

3)若點C為平面直角坐標(biāo)系內(nèi)一點,是否存在t值,使得以A、P、Q、C為頂點的四邊形為菱形?若存在,求出Q點坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將圖一中的等腰直角三角形紙片ABC,依次沿著折痕DE,FG翻折,得到圖二中的五邊形ADEGF.若圖二中,DFEG,點CB恰好都是線段DF的三等分點,GCEB于點O,EG42,則等腰直角三角形ABC的斜邊BC的長為( 。

A.4+6B.46C.8+4D.84

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ACL90°AC4,動點B在射線CLCHAB于點H,以H為圓心,HB為半徑作圓交射線BA于點D,交直線CD于點F,交直線BC于點E.設(shè)BCm

1)當(dāng)∠A30°時,求∠CDB的度數(shù);

2)當(dāng)m2時,求BE的長度;

3)在點B的整個運動過程中,

①當(dāng)BC3CE時,求出所有符合條件的m的值.

②連接EH,FH,當(dāng)tanFHE時,直接寫出△FHD與△EFH面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,ABADABBC,以AB為直徑的OCD相切于點E,連接OC、OD

1)求證:OCOD;

2)如圖2,連接ACOE于點M,若AB4,BC1,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c經(jīng)過點A(﹣2,0),B(0、﹣4)與x軸交于另一點C,連接BC.

(1)求拋物線的解析式;

(2)如圖,P是第一象限內(nèi)拋物線上一點,且SPBO=SPBC,求證:AP∥BC;

(3)在拋物線上是否存在點D,直線BD交x軸于點E,使ABE與以A,B,C,E中的三點為頂點的三角形相似(不重合)?若存在,請求出點D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,從一張腰長為60cm,頂角為120°的等腰三角形鐵皮OAB中剪出一個最大的扇形OCD,用此剪下的扇形鐵皮圍成一個圓錐的側(cè)面(不計損耗),則該圓錐的高為______cm

查看答案和解析>>

同步練習(xí)冊答案