【題目】如圖,某測量小組為了測量山BC的高度,在地面A處測得山頂B的仰角45°,然后沿著坡度為i=1:的坡面AD走了200米達到D處,此時在D處測得山頂B的仰角為60°,求山高BC(結果保留根號).
【答案】BC= 100+100(米).
【解析】
作DF⊥AC于F,根據i=1:,AD=200米,可知tan∠DAF=,可知∠DAF=30°,進而求出DF的長度,根據所給角的度數可知△ABD是等腰三角形,AD=BD,解直角三角形BDE可求出BE,根據BC=BE+CE求出BC即可.
作DF⊥AC于F.
∵DF:AF=1:,AD=200米,
∴tan∠DAF=,
∴∠DAF=30°,
∴DF=AD=×200=100(米),
∵∠DEC=∠BCA=∠DFC=90°,
∴四邊形DECF是矩形,
∴EC=DF=100(米),
∵∠BAC=45°,BC⊥AC,
∴∠ABC=45°,
∵∠BDE=60°,DE⊥BC,
∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,
∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠1=45°﹣30°=15°,
∴∠ABD=∠BAD,
∴AD=BD=200(米),
在Rt△BDE中,sin∠BDE= ,
∴BE=BDsin∠BDE=200×=100(米),
∴BC=BE+EC=100+100(米).
科目:初中數學 來源: 題型:
【題目】我國古代數學的許多發(fā)現都曾位居世界前列,其中“楊輝三角”(如圖所示)就是一例.
這個三角形的構造法則為:兩腰上的數都是1,其余每個數均為其上方左右兩數之和.事實上,這個三角形給出了(為正整數)的展開式(按的次數由大到小的順序排列)的系數規(guī)律.例如,在三角形中第三行的三個數1、、1,恰好對應展開式中各項的系數;第四行的四個數1、、、1,恰好對應著展開式中各項的系數等等.根據上面的規(guī)律,的展開式中各項系數最大的數為_______;式子的值為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角三角形ABC中,∠ACB=90°,∠B=36°,D是AB的中點,ED⊥AB交BC于E,連接CD,則∠CDE:∠ECD=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中,,,,且滿足.
(1)于,交軸于,求點坐標;
(2)過點作于,交于,若,求的長;
(3)為第一象限一點,交軸于.在上截取,為的中點,求的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程解應用題:
(1)一個箱子,如果裝橙子可以裝18個,如果裝梨可以裝16個,現共有橙子、梨400個,而且裝梨的箱子是裝橙子箱子的2倍.請算一下,裝橙子和裝梨的箱子各多少個?
(2)一群小孩分一堆蘋果,每人3個多7個,每人4個少3個,求有幾個小孩?幾個蘋果?
(3)一架飛機在兩城之間飛行,風速為24千米/時.順風飛行需要2小時50分,逆風飛行需要3小時,求無風時飛機的速度和兩城之間的航程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:三角形ABC中,∠A=90,AB=AC,D為BC的中點,如圖,E,F分別是AB,AC上的點,且BE=AF,求證:△DEF為等腰直角三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,點D是等邊△ABC的邊BC上一點,連接AD,以AD為一邊,向右作等邊三角形ADE,連接CE,求證:AC=CD+CE.
(類比探究)
(1)如果點D在BC的延長線上,其它條件不變,請在圖②的基礎上畫出滿足條件的圖形,寫出線段AC,CD,CE之間的數量關系,并說明理由.
(2)如果點D在CB的延長線上,請在圖③的基礎上畫出滿足條件的圖形,并直接寫出AC,CD,CE之間的數量關系,不需要說明理由.數量關系:_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知E是平行四邊形ABCD中BC邊的中點,連接AE并延長AE交DC的延長線于點F。
(1)求證:△ABE≌△FCE;
(2)連接AC、BF,若AE=BC,求證:四邊形ABFC為矩形;
(3)在(2)條件下,當△ABC再滿足一個什么條件時,四邊形ABFC為正方形。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com