精英家教網 > 初中數學 > 題目詳情

【題目】如圖,某測量小組為了測量山BC的高度,在地面A處測得山頂B的仰角45°,然后沿著坡度為i=1:的坡面AD走了200米達到D處,此時在D處測得山頂B的仰角為60°,求山高BC(結果保留根號).

【答案】BC= 100+100(米).

【解析】

DFACF,根據i=1:,AD=200,可知tanDAF=,可知∠DAF=30°,進而求出DF的長度,根據所給角的度數可知△ABD是等腰三角形,AD=BD,解直角三角形BDE可求出BE,根據BC=BE+CE求出BC即可.

DFACF.

DF:AF=1:,AD=200米,

tanDAF=,

∴∠DAF=30°,

DF=AD=×200=100(米),

∵∠DEC=BCA=DFC=90°,

∴四邊形DECF是矩形,

EC=DF=100(米),

∵∠BAC=45°,BCAC,

∴∠ABC=45°,

∵∠BDE=60°,DEBC,

∴∠DBE=90°﹣BDE=90°﹣60°=30°,

∴∠ABD=ABC﹣DBE=45°﹣30°=15°,BAD=BAC﹣1=45°﹣30°=15°,

∴∠ABD=BAD,

AD=BD=200(米),

RtBDE中,sinBDE=

BE=BDsinBDE=200×=100(米),

BC=BE+EC=100+100(米).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我國古代數學的許多發(fā)現都曾位居世界前列,其中“楊輝三角”(如圖所示)就是一例.

這個三角形的構造法則為:兩腰上的數都是1,其余每個數均為其上方左右兩數之和.事實上,這個三角形給出了(為正整數)的展開式(的次數由大到小的順序排列)的系數規(guī)律.例如,在三角形中第三行的三個數1、、1,恰好對應展開式中各項的系數;第四行的四個數1、、、1,恰好對應著展開式中各項的系數等等.根據上面的規(guī)律,的展開式中各項系數最大的數為_______;式子的值為______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直角三角形ABC中,∠ACB90°,∠B36°,DAB的中點,EDABBCE,連接CD,則∠CDE:∠ECD_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,中,,,,且滿足.

(1),交軸于,求點坐標;

(2)過點,交,若,求的長;

(3)為第一象限一點,軸于.上截取,的中點,求的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程解應用題:

(1)一個箱子,如果裝橙子可以裝18個,如果裝梨可以裝16個,現共有橙子、梨400個,而且裝梨的箱子是裝橙子箱子的2倍.請算一下,裝橙子和裝梨的箱子各多少個?

(2)一群小孩分一堆蘋果,每人3個多7個,每人4個少3個,求有幾個小孩?幾個蘋果?

(3)一架飛機在兩城之間飛行,風速為24千米/時.順風飛行需要2小時50分,逆風飛行需要3小時,求無風時飛機的速度和兩城之間的航程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:三角形ABC,A=90,AB=ACDBC的中點,如圖,E,F分別是AB,AC上的點,且BE=AF,求證:DEF為等腰直角三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若四邊形的兩條對角線分別平分兩組對角,則該四邊形一定是(

A. 平行四邊形 B. 菱形 C. 矩形 D. 正方形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,點D是等邊△ABC的邊BC上一點,連接AD,以AD為一邊,向右作等邊三角形ADE,連接CE,求證:AC=CD+CE.

(類比探究)

(1)如果點DBC的延長線上,其它條件不變,請在圖②的基礎上畫出滿足條件的圖形,寫出線段AC,CD,CE之間的數量關系,并說明理由.

(2)如果點DCB的延長線上,請在圖③的基礎上畫出滿足條件的圖形,并直接寫出AC,CDCE之間的數量關系,不需要說明理由.數量關系:_______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知E是平行四邊形ABCDBC邊的中點,連接AE并延長AEDC的延長線于點F。

(1)求證:△ABE≌△FCE;

(2)連接AC、BF,若AE=BC,求證:四邊形ABFC為矩形;

(3)在(2)條件下,當△ABC再滿足一個什么條件時,四邊形ABFC為正方形。

查看答案和解析>>

同步練習冊答案