分析 (1)先根據(jù)題意得出四邊形DCBE是平行四邊形,再由平行四邊形的性質(zhì)得出FB∥DE,故可得出∠FBH=∠EDH,∠DEH=∠BFH,進而可得出結(jié)論;
(2)先有平行四邊形的性質(zhì)得出BC∥DE,BC=DE,再由△EDH∽△FBH可得出結(jié)論.
解答 (1)證明:∵在四邊形ABCD中,AB∥CD,且AB=2CD,E,是AB的中點,
∴DC=$\frac{1}{2}$AB=EB,DC∥BE,
∴四邊形DCBE是平行四邊形,
∴FB∥DE,
∴△EDH∽△FBH;
(2)解:由(1)知,BC∥DE,BC=DE,
∵FB=$\frac{1}{2}$BC,
∴FB=$\frac{1}{2}$DE.
∵△EDH∽△FBH,
∴$\frac{DE}{BF}$=$\frac{DH}{HB}$=2.
∵DH+HB=6,
∴DH=4.
點評 本題考查的是相似三角形的判定與性質(zhì),三角形相似的判定一直是中考考查的熱點之一,在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com