9.已知(x+y)2=25,xy=$\frac{9}{4}$,求x-y的值.

分析 根據(jù)完全平方公式即可求出答案.

解答 解:∵(x+y)2=x2+2xy+y2,
∴25=x2+y2+$\frac{9}{2}$,
∴x2+y2=$\frac{41}{2}$
∵(x-y)2=x2-2xy+y2,
∴(x-y)2=$\frac{41}{2}$-$\frac{9}{2}$=16
∴x-y=±4

點評 本題考查完全平方公式,涉及代入求值問題,屬于基礎題型.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

19.已知a2+b2=5,ab=-2,求代數(shù)式2(4a2+2ab-b2)-3(5a2-3ab+2b2)+b2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

20.【提出問題】
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等邊△AMN,連結CN.求證:CN∥AB.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論CN∥AB還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

17.如圖,在四邊形ABCD中,AB∥CD,且AB=2CD,E,F(xiàn)分別是AB,BC的中點,EF與BD交于點H.
(1)求證:△EDH∽△FBH;
(2)若BD=6,求DH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.(1)解方程:$\frac{2x-1}{6}$-$\frac{3x-1}{8}$=1+$\frac{x+1}{3}$
(2)先化簡,再求值:-3x2b+(3ab2-a2b)-2(2ab2-a2b),其中(a+1)2+|b-2|=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

14.已知菱形A1B1C1D1的邊長為2,∠A1B1C1=60°,對角線A1C1、B1D1相交于點O,以點O為坐標原點,分別以OB1,OA1所在直線為x軸、y軸建立如圖所示的直角坐標系,以B1D1為對角線作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2為對角線作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2為對角線作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此規(guī)律繼續(xù)作下去,在y軸的正半軸上得到點A1,A2,A3,…,An,則點A2017的坐標為(0,32016).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.如圖,在⊙O中,直徑AB=4,點C在⊙O上,且∠AOC=60°,連接BC,點P在BC上(點P不與點B,C重合),連接OP并延長交⊙O于點M,過P作PQ⊥OM交$\widehat{AM}$于點Q.
(1)求BC的長;
(2)當PQ∥AB時,求PQ的長;
(3)點P在BC上移動,當PQ的長取最大值時,試判斷四邊形OBMC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.如圖1,點M放在正方形ABCD的對角線AC(不與點A重合)上滑動,連結DM,做MN⊥DM交直線AB于N.

(1)求證:DM=MN;
(2)若將(1)中的正方形變?yōu)榫匦,其余條件不變(如圖2),且DC=2AD,求MD:MN;
(3)在(2)中,若CD=nAD,當M滑動到CA的延長線上時(如圖3),請你直接寫出MD:MN的比值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.對于一個圓和一個正方形給出如下定義:若圓上存在到此正方形四條邊距離都相等的點,則稱這個圓是該正方形的“等距圓”.
如圖1,在平面直角坐標系xOy中,正方形ABCD的頂點A的坐標為(2,4),頂點C、D在x軸上,且點C在點D的左側.

(1)當r=2$\sqrt{2}$時,在P1(0,2),P2(-2,4),P3(4$\sqrt{2}$,2),P4(0,2-2$\sqrt{2}$)中可以成為正方形ABCD的“等距圓”的圓心的是P2(-2,4)或P4(0,2-2$\sqrt{2}$);
(2)若點P坐標為(-3,6),則當⊙P的半徑r=5時,⊙P是正方形ABCD的“等距圓”.試判斷此時⊙P與直線AC的位置關系?并說明理由.
(3)如圖2,在正方形ABCD所在平面直角坐標系xOy中,正方形EFGH的頂點F的坐標為(6,2),頂點E、H在y軸上,且點H在點E的上方.
若⊙P同時為上述兩個正方形的“等距圓”,且與BC所在直線相切,求⊙P的圓心P的坐標.

查看答案和解析>>

同步練習冊答案