【題目】如圖,拋物線 x軸交于點(diǎn)A(-1,0),點(diǎn)B(3,0),與y軸正半軸交于點(diǎn)C.

(1)拋物線的解析式為________;

(2)P為拋物線上一點(diǎn),連結(jié)AC,PC,若∠PCO=3ACO,點(diǎn)P的坐標(biāo)為________.

【答案】y=x2+2x+3 (,)

【解析】

(1)將A、B兩點(diǎn)坐標(biāo)代入拋物線解析式得一個二元一次方程組,解之即可得出b、c值,從而可得拋物線解析式.

(2)延長CPx軸于點(diǎn)E,在x軸上取點(diǎn)D,使CD=CA,作ENCDCD的延長線于點(diǎn)N,作AICDCDI,由等腰三角形三線合一的性質(zhì)可知

DCO=ACO,結(jié)合已知條件可知∠ACD=ECD,由此得tanACD=tanECD,即根據(jù)等面積法求得AI=, 由勾股定理得CI=, 由此設(shè)EN=3x,則CN=4x,根據(jù)tanCDO=tanEDNDN=x,由CD=CN-DN求得x值以及E點(diǎn)坐標(biāo),再由待定系數(shù)法求得直線CE解析式y=-x+3,將直線CE和拋物線解析式聯(lián)立、解之即可求得P點(diǎn)坐標(biāo).

(1)解:∵A(-1,0),B(3,0)在拋物線上,

,

解得:

∴拋物線解析式為:y=x2+2x+3.

故答案為:y=x2+2x+3.(2)延長CPx軸于點(diǎn)E,在x軸上取點(diǎn)D,使CD=CA,作ENCDCD的延長線于點(diǎn)N,作AICDCDI,

CD=CA,OCAD,

∴∠DCO=ACO,

∵∠PCO=3ACO,

∴∠ACD=ECD,

tanACD=tanECD,

RtACI中,

又∵A(-1,0),C(0,3),

OA==OD=1,OC=3,

AD=2,AC=DC=

AI=,

CI=,

設(shè)EN=3x,則CN=4x,DE=5x,

tanCDO=tanEDN,

,

DN=x,

CD=CN-DN=4x-x=3x=,

x=,

DN=, EN=,

DE=

E(, 0),

設(shè)直線CE解析式為:y=kx+b,

解得,

∴直線CE解析式為:y=-x+3,

,

解得:(舍去)或

P(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)

為營造書香家庭,周末小亮和姐姐一起從家出發(fā)去圖書館借書,走了6分鐘忘帶借書證,小亮立即騎路邊共享單車返回家中取借書證,姐姐以原來的速度繼續(xù)向前行走,小亮取到借書證后騎單車原路原速前往圖書館,小亮追上姐姐后用單車帶著姐姐一起前往圖書館.已知單車的速度是步行速度的3倍,如圖是小亮和姐姐距家的路程y(米)與出發(fā)的時間x(分鐘)的函數(shù)圖象,根據(jù)圖象解答下列問題:

小亮在家停留了 分鐘.

求小亮騎單車從家出發(fā)去圖書館時距家的路程y(米)與出發(fā)時間x(分鐘)之間的函數(shù)關(guān)系式.

若小亮和姐姐到圖書館的實(shí)際時間為m分鐘,原計(jì)劃步行到達(dá)圖書館的時間為n分鐘,則n-m= 分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某市九年級學(xué)生的體育成績(成績均為整數(shù)),隨機(jī)抽取了部分學(xué)生的體育成績并分段(A:20.5~22.5;B:22.5~24.5;C:24.5~26.5;D:26.5~28.5;E:28.5~30.5)統(tǒng)計(jì)如下,而且制成了如圖所示的不完整的統(tǒng)計(jì)圖.

體育成績統(tǒng)計(jì)表

分?jǐn)?shù)段

頻數(shù)

頻率

A

12

0.05

B

36

a

C

84

0.35

D

b

0.25

E

48

0.20

體育成績統(tǒng)計(jì)圖

根據(jù)上面提供的信息,解答下列問題:

(1)在統(tǒng)計(jì)表中,a=________,b=________,并將統(tǒng)計(jì)圖補(bǔ)充完整;

(2)小明說:這組數(shù)據(jù)的眾數(shù)一定在C中.你認(rèn)為小明的說法正確嗎?__________(正確錯誤”).

(3)若成績在27分以上(27)定為優(yōu)秀,則該市今年48 000名九年級學(xué)生中體育成績?yōu)閮?yōu)秀的學(xué)生約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一塊兩直角邊長分別為AC=3cmBC=4cm的直角三角形鐵皮,要利用它來裁剪一個正方形,有兩種方法:一種是正方形的一邊在直角三角形的斜邊上,另兩個頂點(diǎn)在兩條直角邊上,如圖(1);另一種是一組鄰邊在直角三角形的兩直角邊上,另一個頂點(diǎn)在斜邊上,如圖(2).用計(jì)算說明兩種情形下正方形的面積哪個大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,連接,以對角線為邊按逆時針方向作矩形,使矩形矩形;再連接,以對角線為邊,按逆時針方向作矩形,使矩形矩形, ..按照此規(guī)律作下去,若矩形的面積記作,矩形的面積記作,矩形的面積記作, ... 的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,點(diǎn)P為射線DC上的一個動點(diǎn),點(diǎn)QAB的中點(diǎn),連接PQ,DQ,過點(diǎn)PPEDQ于點(diǎn)E

1)請找出圖中一對相似三角形,并證明;

2)若AB4,以點(diǎn)PE,Q為頂點(diǎn)的三角形與ADQ相似,試求出DP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線a≠0)經(jīng)過A﹣10)、B3,0)、C0,﹣3)三點(diǎn),直線l是拋物線的對稱軸.

1)求拋物線的函數(shù)關(guān)系式;

2)設(shè)點(diǎn)P是直線l上的一個動點(diǎn),當(dāng)點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和最短時,求點(diǎn)P的坐標(biāo);

3)點(diǎn)M也是直線l上的動點(diǎn),且△MAC為等腰三角形,請直接寫出所有符合條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里有5個小球,分別標(biāo)有數(shù)字﹣3,﹣2,﹣1,﹣,﹣,這些小球除所標(biāo)的數(shù)不同外其余都相同,先從盒子隨機(jī)摸出1個球,記下所標(biāo)的數(shù),再從剩下的球中隨機(jī)摸出1個球,記下所標(biāo)的數(shù).

(1)用畫樹狀圖或列表的方法求兩次摸出的球所標(biāo)的數(shù)之積不大于1的概率.

(2)若以第一次摸出球上的數(shù)字為橫坐標(biāo),第二次摸出球上的數(shù)字為縱坐標(biāo)確定一點(diǎn),直接寫出該點(diǎn)在雙曲線y=上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:到一個三角形三個頂點(diǎn)的距離相等的點(diǎn)叫做該三角形的外心.

1)如圖①,小海同學(xué)在作ABC的外心時,只作出兩邊BC,AC的垂直平分線得到交點(diǎn)O,就認(rèn)定點(diǎn)OABC的外心,你覺得有道理嗎?為什么?

2)如圖②,在等邊三角形ABC的三邊上,分別取點(diǎn)D,E,F,使ADBECF,連接DEEF,DF,得到DEF.若點(diǎn)OABC的外心,求證:點(diǎn)O也是DEF的外心.

查看答案和解析>>

同步練習(xí)冊答案