【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點(diǎn)C,D,E分別是OA,OB,AB的中點(diǎn).
(1)求證:△PCE≌△EDQ;
(2)延長(zhǎng)PC,QD交于點(diǎn)R.如圖2,若∠MON=150°,求證:△ABR為等邊三角形;
(3)如圖3,若△ARB∽△PEQ,求∠MON大小
【答案】
(1)證明:∵點(diǎn)C、D、E分別是OA,OB,AB的中點(diǎn),
∴DE=OC,∥OC,CE=OD,CE∥OD,
∴四邊形ODEC是平行四邊形,
∴∠OCE=∠ODE,
∵△OAP,△OBQ是等腰直角三角形,
∴∠PCO=∠QDO=90°,
∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,
∵PC= AO=OC=ED,CE=OD= OB=DQ,
在△PCE與△EDQ中,
,
∴△PCE≌△EDQ;
(2)解:如圖2,連接RO,
∵PR與QR分別是OA,OB的垂直平分線,
∴AP=OR=RB,
∴∠ARC=∠ORC,∠ORQ=∠BRO,
∵∠RCO=∠RDO=90°,∠COD=150°,
∴∠CRD=30°,
∴∠ARB=60°,
∴△ARB是等邊三角形;
(3)解:如圖3中,
由(1)得,EQ=EP,∠DEQ=∠CPE,
∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,
∴△PEQ是等腰直角三角形,
∵△ARB∽△PEQ,
∴∠ARB=∠PEQ=90°,
∴∠OCR=∠ODR=90°,∠CRD= ∠ARB=45°,
∴∠MON=180°﹣∠CRD=135°.
【解析】(1)此小題關(guān)鍵是根據(jù)三角形的中位線的性質(zhì)得到得出四邊形ODEC是平行四邊形,于是得到∠OCE=∠ODE,根據(jù)等腰直角三角形得到∠PCO=∠QDO=90°,PC=ED,CE=DQ,即可得到結(jié)論;
(2)連接RO,由垂直平分線的性質(zhì),得到AP=OR=RB,再由等腰三角形的性質(zhì)得到∠ARC=∠ORC,∠ORQ=∠BRO,在四邊形CRDO中得到∠CRD=30°,即可得到結(jié)論;
(3)由(1)得EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,證得△PEQ是等腰直角三角形,根據(jù)相似三角形的性質(zhì)得到∠ARB=∠PEQ=90°,從而求得∠MON的度數(shù).
【考點(diǎn)精析】通過靈活運(yùn)用平行四邊形的判定與性質(zhì)和相似三角形的判定與性質(zhì),掌握若一直線過平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知折痕AE=5 cm,且tan∠EFC=0.75,則矩形ABCD的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某翼裝飛行員從離水平地面高AC=500m的A處出發(fā),沿著俯角為15°的方向,直線滑行1600米到達(dá)D點(diǎn),然后打開降落傘以75°的俯角降落到地面上的B點(diǎn).求他飛行的水平距離BC(結(jié)果精確到1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點(diǎn)G在對(duì)角線BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路線為B→A→G→E,小聰行走的路線為B→A→D→E→F.若小敏行走的路程為3100m,則小聰行走的路程為 m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s,在一條筆直公路BD的上方A處有一探測(cè)儀.如圖,AD=24m,∠D=90°,第一次探測(cè)到一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°
(1)求B,C的距離.
(2)通過計(jì)算,判斷此轎車是否超速.(tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1.平面直角坐標(biāo)系為原點(diǎn),長(zhǎng)方形的頂點(diǎn)在坐標(biāo)軸上,點(diǎn),,且己知是64的立方根,.
(1)求點(diǎn)的坐標(biāo);
(2)如圖1,有兩動(dòng)點(diǎn)點(diǎn)從點(diǎn)出發(fā)沿軸負(fù)方向以1個(gè)單位長(zhǎng)度每秒的速度勻速移動(dòng),點(diǎn)從點(diǎn)出發(fā)以2個(gè)單位長(zhǎng)度每秒的速度沿的路線勻速移動(dòng),點(diǎn)到達(dá)點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.若長(zhǎng)方形對(duì)角線的交點(diǎn)的坐標(biāo)是,設(shè)運(yùn)動(dòng)時(shí)間為秒,問:以為頂點(diǎn)的多邊形面積是否為定值,若是,請(qǐng)求出此多邊形的面積;若不是,請(qǐng)說明理由.
(3)如圖2,是線段上一點(diǎn),使,點(diǎn)是線段上任意一點(diǎn)(不與點(diǎn)重合),連接交于點(diǎn).已知,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)-23×(1-)÷0.5;
(2)(--)÷-2;
(3)3(20-y)=6y-4(y-11);
(4)-1=-.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹BC的高度,他們?cè)谛逼律螪處測(cè)得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹頂端B的仰角是48°,若坡角∠FAE=30°,求大樹的高度(結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為 1,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B 的對(duì)應(yīng)點(diǎn) B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)線段 AA′與線段 BB′的數(shù)量和位置關(guān)系是___________;
(3)求△A′B′C′的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com