【題目】如圖,矩形ABCD中,AB=1,BC=2,BC在x軸上,一次函數(shù)y=kx﹣2的圖象經(jīng)過A、C兩點,并與y軸交于點E,反比例函數(shù)y= 的圖象經(jīng)過點A.
(1)寫出點E的坐標;
(2)求一次函數(shù)和反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
【答案】
(1)
解:∵一次函數(shù)y=kx﹣2的圖象與y軸交于點E,
∴x=0時,y=﹣2,
∴點E的坐標為:(0,﹣2);
(2)
解:由題意可知AB∥OE,
∴△ABC∽△EOC,
∴ ,
∴OC= = =4,
點C的坐標為:(4,0),
把點C的坐標(4,0)代入y=kx﹣2得,
4k﹣2=0,
∴k= ,
∴一次函數(shù)的解析式為:y= x﹣2,
∵AB=1,代入y= x﹣2,
∴1= x﹣2,
∴x=6,
由上知點A的坐標為:(6,1),
∴1= ,
∴m=6,
∴反比例函數(shù)的解析式為:y= ;
(3)
解:當x>0時,∵點A的坐標為:(6,1),
∴由圖象可知當x>6時,一次函數(shù)的值大于反比例函數(shù)的值.
【解析】(1)根據(jù)一次函數(shù)與y軸相交時,x=0,得出y的值,即可得出E點坐標;(2)利用平行線分線段成比例定理得出 = ,求出C點坐標,即可求出k的值,再利用A點坐標求出反比例函數(shù)解析式;(3)結(jié)合圖象,利用比較函數(shù)大小的方法,取同一值時在上面的就大,即可得出答案.
【考點精析】掌握反比例函數(shù)的圖象和反比例函數(shù)的性質(zhì)是解答本題的根本,需要知道反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點;性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務(wù)精神,傳播“奉獻他人、提升自我”的志愿服務(wù)理念,東營市某中學(xué)利用周末時間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個志愿服務(wù)活動(每人只參加一個活動),九年級某班全班同學(xué)都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)求該班的人數(shù);
(2)請把折線統(tǒng)計圖補充完整;
(3)求扇形統(tǒng)計圖中,網(wǎng)絡(luò)文明部分對應(yīng)的圓心角的度數(shù);
(4)小明和小麗參加了志愿服務(wù)活動,請用樹狀圖或列表法求出他們參加同一服務(wù)活動的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AB∥CD,E是BC的中點,EF⊥AD于點F,AD=4,EF=5,則梯形ABCD的面積是( )
A.40
B.30
C.20
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面圖形:四邊形,三角形,梯形,平行四邊形,菱形,矩形,正方形,圓,從中任取一個圖形既是軸對稱圖形又是中心對稱圖形的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的面積是63,D是BC上的一點,且BD:CD=2:1,DE∥AC交AB于E,延長DE到F,使FE:ED=2:1,則△CDF的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC與BD相交于點O,E為OD的中點,連接AE并延長交DC于點F,則S△DEF:S△AOB的值為( )
A.1:3
B.1:5
C.1:6
D.1:11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,按要求畫出△A1B1C1和△A2B2C2;
①把△ABC先向右平移4個單位,再向上平移1個單位,得到△A1B1C1;
②以圖中的O為位似中心,將△A1B1C1作位似變換且放大到原來的兩倍,得到△A2B2C2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖A、F、B、C是半圓O上的四個點,四邊形OABC是平行四邊形,∠FAB=15°,連接OF交AB于點E,過點C作OF的平行線交AB的延長線于點D,延長AF交直線CD于點H.
(1)求證:CD是半圓O的切線;
(2)求 的比值;若DH=6,求EF和半徑OA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了相應(yīng)“足球進校園”的號召,某體育用品商店計劃購進一批足球,第一次用6000元購進A品牌足球m個,第二次又用6000元購進B品牌足球,購進的B品牌足球的數(shù)量比購進的A品牌足球多30個,并且每個A品牌足球的進價是每個B品牌足球的進價的 .
(1)求m的值;
(2)若這兩次購進的A,B兩種品牌的足球分別按照a元/個, a元/個兩種價格銷售,全部銷售完畢后,可獲得的利潤不低于4800元,求出a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com