【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點.
(1)求b、c的值;
(2)P為拋物線上的點,且滿足S△PAB=8,求P點的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說明理由. |
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況,探索結(jié)論
當點E為AB的中點時,如圖1,確定線段AE與的DB大小關(guān)系.請你直接寫出結(jié)論:
AE DB(填“>”,“<”或“=”).
圖1 圖2
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).
理由如下:如圖2,過點E作EF∥BC,交AC于點F.
(請你完成以下解答過程)
(3)拓展結(jié)論,設計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知一次函數(shù)y=kx+b(k≠0)的圖象與x軸、y軸的交點分別為A、B兩點.且與反比例函數(shù)y=(m≠0)的圖象在第一象限交于點C,CD垂直于x軸,垂足為D,若OA=OB=OD=1.
(1)一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ACD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,以為邊在外作等邊三角形,過點作的垂線,垂足為,與相交于點,連接.
(1)說明:;
(2)若,,是直線上的一點.則當在何處時,最小,并求此時的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點P是正方形ABCD內(nèi)一點,連接PA、PB、PC.
(1)將△PAB繞點B順時針旋轉(zhuǎn)90°得到△P′CB,若AB=m,PB=n(n<m).求△PAB旋轉(zhuǎn)過程中邊PA掃過區(qū)域(陰影部分)的面積;
(2)若PA= ,PB=2,∠APB=135°,求PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=mx+n的圖像與x軸交于點B,與反比例函數(shù)(k﹥0)的圖像交于點C,過點C作CH⊥x軸,點D是反比例函數(shù)圖像上的一點,直線CD與x軸交于點A,若∠HCB=∠HCA,且BC=10,BA=16.
(1)若OA=11,求k的值;
(2)沿著x軸向右平移直線BC,若直線經(jīng)過H點時恰好又經(jīng)過點D,求一次函數(shù)函數(shù)y=mx+n的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
在一個三角形中,各邊和它所對角的正弦的比相等, ,利用上述結(jié)論可以求解如下題目:
在△ABC中,∠A、∠B、∠C的對邊分別為a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵
∴b=.
理解應用:
如圖,甲船以每小時30海里的速度向正北方向航行,當甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當甲船航行20分鐘到達A2時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10海里.
(1)判斷△A1A2B2的形狀,并給出證明;
(2)求乙船每小時航行多少海里?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中直線:分別與x軸,y軸交于點A和點B,過點A的直線與y軸交于點C,.
(1)求直線的解析式;
(2)若D為線段上一點,E為線段上一點,當時,求的最小值,并求出此時點E的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com