【題目】某市居民用水實(shí)行以戶為單位的三級(jí)階梯收費(fèi)辦法:

第一級(jí):居民每戶每月用水噸以內(nèi)含噸,每噸收水費(fèi)元;

第二級(jí):居民每戶每月用水超過(guò)噸但不超過(guò)噸,未超過(guò)的部分按照第一級(jí)標(biāo)準(zhǔn)收費(fèi),超過(guò)部分每噸收水費(fèi)元;

第三級(jí):居民每戶每月用水超過(guò)噸,未超過(guò)噸的部分按照第一、二級(jí)標(biāo)準(zhǔn)收費(fèi),超過(guò)部分每噸收水費(fèi)元;

設(shè)一戶居民月用水噸,應(yīng)繳水費(fèi)元,之間的函數(shù)關(guān)系如圖所示,

(Ⅰ)根據(jù)圖象直接作答:___________,_______________,_______________;

(Ⅱ)求當(dāng)時(shí),之間的函數(shù)關(guān)系式;

(Ⅲ)把上述水費(fèi)階梯收費(fèi)辦法稱為方案①,假設(shè)還存在方案②;居民每戶月用水一律按照每噸元的標(biāo)準(zhǔn)繳費(fèi).當(dāng)居民用戶月用水超過(guò)噸時(shí),請(qǐng)你根據(jù)居民每戶月用水量的大小設(shè)計(jì)出對(duì)居民繳費(fèi)最實(shí)惠的方案.

【答案】(Ⅰ);(Ⅱ);(Ⅲ)當(dāng)時(shí),選擇繳費(fèi)方案①更實(shí)惠;當(dāng)時(shí),選擇兩種繳費(fèi)方案費(fèi)用相同;當(dāng)時(shí),選擇繳費(fèi)方案②更實(shí)惠.

【解析】

1)根據(jù)單價(jià)=總價(jià)÷數(shù)量,即可求出a,b,c的值;
2)觀察函數(shù)圖象,找出點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出當(dāng)x≥25時(shí)yx之間的函數(shù)關(guān)系;
3)由總價(jià)=單價(jià)×數(shù)量可找出選擇繳費(fèi)方案②需交水費(fèi)y(元)與用水?dāng)?shù)量x(噸)之間的函數(shù)關(guān)系式,分別找出當(dāng)6x-684x,6x-68=4x6x-684x時(shí)x的取值范圍(x的值),選擇費(fèi)用低的方案即可得出結(jié)論.

解:(Ⅰ)a=54÷18=3,
b=82-54÷25-18=4

c=142-82÷35-25=6

故答案為:3,,46;

(Ⅱ)設(shè)當(dāng)x≥25時(shí),yx之間的函數(shù)關(guān)系式為y=mx+nm≠0),

將(25,82),(35,142)代入y=mx+n,得:,

解得:,

∴當(dāng)時(shí),之間的函數(shù)關(guān)系式為.

(Ⅲ)選擇繳費(fèi)方案②需交水費(fèi)(元)與用水量(噸)之間的函數(shù)關(guān)系式為.

當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng),.

∴當(dāng)時(shí),選擇繳費(fèi)方案①更實(shí)惠;當(dāng)時(shí),選擇兩種繳費(fèi)方案費(fèi)用相同;當(dāng)時(shí),選擇繳費(fèi)方案②更實(shí)惠.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,平行四邊形ABCD中,ABAC,AB6,AD10,點(diǎn)P在邊AD上運(yùn)動(dòng),以P為圓心,PA為半徑的P與對(duì)角線AC交于A,E兩點(diǎn).不難發(fā)現(xiàn),隨著AP的變化,P與平行四邊形ABCD的邊的公共點(diǎn)的個(gè)數(shù)也在變化.如圖2,當(dāng)P與邊CD相切時(shí),P與平行四邊形ABCD的邊有三個(gè)公共點(diǎn).若公共點(diǎn)的個(gè)數(shù)為4,則相對(duì)應(yīng)的AP的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春節(jié)期間,昆明市政府為了進(jìn)一步做好新冠肺炎疫情的防控工作,在各個(gè)高速公路出入口均設(shè)立檢測(cè)點(diǎn),對(duì)出入人員進(jìn)行登記和體溫檢測(cè),下圖為一高速路口檢測(cè)點(diǎn)的指示牌,已知立桿的高度是,從側(cè)面點(diǎn)處測(cè)得指示牌點(diǎn)和點(diǎn)的仰角分別是,求的長(zhǎng).(結(jié)果精確到.參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,AD // BC,AB = CDAD = 5,BC = 15E為射線CD上任意一點(diǎn),過(guò)點(diǎn)AAF // BE,與射線CD相交于點(diǎn)F.聯(lián)結(jié)BF,與直線AD相交于點(diǎn)G.設(shè)CE = x,

1)求AB的長(zhǎng);

2)當(dāng)點(diǎn)G在線段AD上時(shí),求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;

3)如果,求線段CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸于兩點(diǎn),與軸交于點(diǎn),連接.點(diǎn)是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為

(1)求此拋物線的表達(dá)式;

(2)過(guò)點(diǎn)軸,垂足為點(diǎn),于點(diǎn).試探究點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在這樣的點(diǎn),使得以為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)過(guò)點(diǎn),垂足為點(diǎn).請(qǐng)用含的代數(shù)式表示線段的長(zhǎng),并求出當(dāng)為何值時(shí)有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和1分鐘跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為參加這兩項(xiàng)比賽的10名學(xué)生的預(yù)賽成績(jī):

學(xué)生編號(hào)

成績(jī)

項(xiàng)目

3104

3508

3115

3406

3317

3413

3218

3307

3519

3210

立定跳遠(yuǎn)(單位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

1分鐘跳繩(單位:次)

163

175

160

163

172

170

165

在這10名學(xué)生中,同時(shí)進(jìn)入兩項(xiàng)決賽的只有6人,進(jìn)入立定跳遠(yuǎn)決賽的有8人,如果知道在同時(shí)進(jìn)入兩項(xiàng)決賽的6人中有“3508號(hào)”學(xué)生,沒(méi)有“3307號(hào)”學(xué)生,那么的值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線C1yax22ax3aa≠0)和點(diǎn)A0,﹣3),將點(diǎn)A向右平移2個(gè)單位,再向上平移5個(gè)單位,得到點(diǎn)B

1)求點(diǎn)B的坐標(biāo);

2)求拋物線C1的對(duì)稱軸;

3)把拋物線C1沿x軸翻折,得到一條新拋物線C2,拋物線C2與拋物線C1組成的圖象記為G,若圖象G與線段AB恰有一個(gè)交點(diǎn)時(shí),結(jié)合圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是規(guī)格為8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:

(1)請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(-2,4),B點(diǎn)坐標(biāo)為(-4,2);

(2)在第二象限內(nèi)的格點(diǎn)(網(wǎng)格線的交點(diǎn))上畫一點(diǎn)C,使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),求C點(diǎn)坐標(biāo)和△ABC的周長(zhǎng)(結(jié)果保留根號(hào));

(3)畫出△ABC以點(diǎn)C為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后的△DEC,連結(jié)AE和BD,試說(shuō)明四邊形ABDE是什么特殊四邊形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點(diǎn)D在邊AB上.

(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;

(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EHAB于點(diǎn)H,過(guò)點(diǎn)EGEAB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案