【題目】拋物線經(jīng)過(guò)A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)已知點(diǎn)D 在第四象限的拋物線上,求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)D’的坐標(biāo);
(3)在(2)的條件下,連結(jié)BD,問(wèn)在x軸上是否存在點(diǎn)P,使,若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)
(2)(0,-1)
(3)(1,0)(9,0)
【解析】
(1)將A(1,0)、C(0,3)兩點(diǎn)坐標(biāo)代入拋物線y=ax2+bx3a中,列方程組求a、b的值即可;
(2)將點(diǎn)D(m,m1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對(duì)稱性求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)D'的坐標(biāo);
(3)分兩種情形①過(guò)點(diǎn)C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過(guò)點(diǎn)C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問(wèn)題.
解:(1)將A(1,0)、C(0,3)代入拋物線y=ax2+bx3a中,
得 ,
解得
∴y=x22x3;
(2)將點(diǎn)D(m,m1)代入y=x22x3中,得
m22m3=m1,
解得m=2或1,
∵點(diǎn)D(m,m1)在第四象限,
∴D(2,3),
∵直線BC解析式為y=x3,
∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=32=1,
∴點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)D'(0,1);
(3)存在.滿足條件的點(diǎn)P有兩個(gè).
①過(guò)點(diǎn)C作CP∥BD,交x軸于P,則∠PCB=∠CBD,
∵直線BD解析式為y=3x9,
∵直線CP過(guò)點(diǎn)C,
∴直線CP的解析式為y=3x3,
∴點(diǎn)P坐標(biāo)(1,0),
②連接BD′,過(guò)點(diǎn)C作CP′∥BD′,交x軸于P′,
∴∠P′CB=∠D′BC,
根據(jù)對(duì)稱性可知∠D′BC=∠CBD,
∴∠P′CB=∠CBD,
∵直線BD′的解析式為
∵直線CP′過(guò)點(diǎn)C,
∴直線CP′解析式為,
∴P′坐標(biāo)為(9,0),
綜上所述,滿足條件的點(diǎn)P坐標(biāo)為(1,0)或(9,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸相交于點(diǎn)A(-2,0)、B(4,0),與y軸相交于點(diǎn)C,連接BC,以線段BC為直徑作⊙M,過(guò)點(diǎn)C作直線CE∥AB,與拋物線和⊙M分別交于點(diǎn)D,E.
(1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求線段DE的長(zhǎng);
(3)在BC下方的拋物線上有一點(diǎn)P,P點(diǎn)的橫坐標(biāo)是m,△PBC的面積為S,求出S與m之間的函數(shù)關(guān)系式,并求出當(dāng)m為何值時(shí),S有最大值,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(﹣1,5),B(0,0),C(4,0),D(2019,m),E(2020,n)在某二次函數(shù)的圖象上.下列結(jié)論:①圖象開(kāi)口向上;②圖象的對(duì)稱軸是直線x=2;③m<n;④當(dāng)0<x<4時(shí),y<0.其中正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】暑假到了,即將迎來(lái)手機(jī)市場(chǎng)的銷售旺季.某商場(chǎng)銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4000 | 2500 |
售價(jià)(元/部) | 4300 | 3000 |
該商場(chǎng)計(jì)劃投入15.5萬(wàn)元資金,全部用于購(gòu)進(jìn)兩種手機(jī)若干部,期望全部銷售后可獲毛利潤(rùn)不低于2萬(wàn)元.(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)若商場(chǎng)要想盡可能多的購(gòu)進(jìn)甲種手機(jī),應(yīng)該安排怎樣的進(jìn)貨方案購(gòu)進(jìn)甲乙兩種手機(jī)?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在甲種手機(jī)購(gòu)進(jìn)最多的方案上,減少甲種手機(jī)的購(gòu)進(jìn)數(shù)量,增加乙種手機(jī)的購(gòu)進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過(guò)16萬(wàn)元,該商場(chǎng)怎樣進(jìn)貨,使全部銷售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:
①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結(jié)論有( )個(gè).
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交與A(1,0),B(﹣3,0)兩點(diǎn),頂點(diǎn)為D,交y軸于C.
(1)求該拋物線的解析式.
(2)在拋物線的對(duì)稱軸上是否存在著一點(diǎn)M使得MA+MC的值最小,若存在求出M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,△ABC的邊AC,BC分別與⊙O交于D,E,若E為的中點(diǎn).
(1)求證:DE=EC;
(2)若DC=2,BC=6,求⊙O的半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:對(duì)于拋物線y=ax2+bx+c(a、b、c是常數(shù),a≠0),若b2=ac,則稱該拋物線為黃金拋物線.例如:y=2x2﹣2x+2是黃金拋物線.
(1)請(qǐng)?jiān)賹?xiě)出一個(gè)與上例不同的黃金拋物線的解析式;
(2)若拋物線y=ax2+bx+c(a、b、c是常數(shù),a≠0)是黃金拋物線,請(qǐng)?zhí)骄吭擖S金拋物線與x軸的公共點(diǎn)個(gè)數(shù)的情況(要求說(shuō)明理由);
(3)將黃金拋物線y=2x2﹣2x+2沿對(duì)稱軸向下平移3個(gè)單位.
①直接寫(xiě)出平移后的新拋物線的解析式;
②設(shè)①中的新拋物線與y軸交于點(diǎn)A,對(duì)稱軸與x軸交于點(diǎn)B,動(dòng)點(diǎn)Q在對(duì)稱軸上,問(wèn)新拋物線上是否存在點(diǎn)P,使以點(diǎn)P、Q、B為頂點(diǎn)的三角形與△AOB全等?若存在,直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,,,于點(diǎn)D,將繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到
如圖2,當(dāng)時(shí),求點(diǎn)C、E之間的距離;
在旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn)A、E、F三點(diǎn)共線時(shí),求AF的長(zhǎng);
連結(jié)AF,記AF的中點(diǎn)為P,請(qǐng)直接寫(xiě)出線段CP長(zhǎng)度的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com