精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知兩個全等直角三角形的直角頂點及一條直角邊重合,將△ABC繞點C按順時針方向旋轉到△A′CB′的位置,其中A′C交直線AD于點E,A′B′分別交直線AD,AC于點F,G.則旋轉后的圖中,全等三角形共有(  )

A. 2 B. 3 C. 4 D. 5

【答案】C

【解析】

根據三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SASASA、AASHL

解:旋轉后的圖中,全等的三角形有:△B′CG≌△DCE,△A′B′C≌△ADC△AGF≌△A′EF,

△ACE≌△A′CG,共4對.

故選C

本題考了圖形的旋轉和本三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSSSAS、ASAAAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角,難度不大.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,BDAC D,EFAC FAMD=AGF1=2=35°

1)求∠GFC的度數

2)求證:DMBC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊ABAC上,且AD=AE,連接BE、CD,交于點F

(1)判斷∠ABE與∠ACD的數量關系,并說明理由;

(2)求證:過點A、F的直線垂直平分線段BC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABCF,DECF,DEBC交于點P,若∠ABC=70°,CDE=130°.

(1)試判斷∠ABP與∠BPD之間的數量關系,并說明理由;

(2)求∠BCD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算或解方程

(1)﹣14+(﹣5)2×(﹣)+|0.8﹣1|

(2)﹣1.53×0.75+1.53×+×1.53

(3)

(4)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一元一次不等式組 的解集在數軸上表示出來,正確的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD沿EF折疊,點C落在A處,點D落在D′處.若AB=3,BC=9,則折痕EF的長為(
A.
B.4
C.5
D.2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們知道,一元二次方程x2=﹣1沒有實數根,即不存在一個實數的平方等于﹣1.若我們規(guī)定一個新數“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個根為i).并且進一步規(guī)定:一切實數可以與新數進行四則運算,且原有運算律和運算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2i=﹣i,i4=(i22=(﹣1)2=1,從而對于任意正整數n,我們可以得到i4n+1=i4ni=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.

計算:(1)i.i2.i3.i4
2i+i2+i3+i4+…+i2017+i2018

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,直線AB:y=﹣x+by軸于A(0,1),交x軸于點B.過點E(1,0)作x軸的垂線EFAB于點D,P是直線EF上一動點,且在點D的上方,設P(1,n).

(1)直線AB的表達式為__________________;

(2)①求△ABP的面積(用含n的代數式表示);

②當SABP=2時,求點P的坐標;

③在②的條件下,以PB為邊在第一象限作等腰直角三角形BPC,請直接寫出點C的坐標.

查看答案和解析>>

同步練習冊答案