【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)G是△ABC的重心,CG=2,sin∠ACG=,則BC長(zhǎng)為_____.
【答案】4.
【解析】
延長(zhǎng)CG交AB于D,作DE⊥BC于E,由點(diǎn)G是△ABC的重心,得到CG=2,求得CD=3,點(diǎn)D為AB的中點(diǎn),根據(jù)等腰三角形的性質(zhì)得到DC=DB,又DE⊥BC,求得CE=BE=BC,解直角三角形即可得到結(jié)論.
延長(zhǎng)CG交AB于D,作DE⊥BC于E,
∵點(diǎn)G是△ABC的重心,
∵CG=2,
∴CD=3,點(diǎn)D為AB的中點(diǎn),
∴DC=DB,又DE⊥BC,
∴CE=BE=BC,
∵∠ACG+∠DCE=∠DCE+∠CDE=90°,
∴∠ACG=∠CDE,
∵sin∠ACG=sin∠CDE=,
∴CE=2,
∴BC=4
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
延慶是全市唯一一個(gè)全境域都是水源保護(hù)地的區(qū)域,森林覆蓋率達(dá)到57.46%,“干凈指數(shù)”連續(xù)五年全市第一,人均公共綠地面積41.88平方米,空氣質(zhì)量長(zhǎng)期保持全市前列.根據(jù)區(qū)環(huán)保局的空氣質(zhì)量的通報(bào),2012年空氣質(zhì)量為優(yōu),成為北京市最宜居的地方.
由于經(jīng)濟(jì)發(fā)展,私家車劇增等原因,2013年空氣質(zhì)量下降為良,尤其是PM2.5平均濃度有所增長(zhǎng),2013年PM2.5平均濃度約為78微克/立方米,比2012年PM2.5平均濃度增長(zhǎng)了12.2%.延慶區(qū)作為2019年世園會(huì)和2022年冬奧會(huì)比賽的舉辦地,將全面治理“煤、氣、塵”,逐漸降低PM2.5濃度,力爭(zhēng)到2020年降至46微克/立方米,實(shí)現(xiàn)“延慶藍(lán)”.
據(jù)悉,延慶將大力推廣地源熱泵、風(fēng)能、太陽(yáng)能等新能源和可再生能源.同時(shí)強(qiáng)化大貨車監(jiān)管,提升新能源車輛利用率.2020年新能源和可再生能源在延慶的使用比例將達(dá)到40%,煤炭能源消費(fèi)總量占比3%以下,基本建成“無(wú)煤區(qū)”.
經(jīng)過(guò)全面治理,2014年PM2.5平均濃度約為70微克/立方米,比2013年平均濃度降低了10.26%;2015年PM2.5平均濃度比2014年平均濃度降低了10%,為全市最低;2016年PM2.5平均濃度約為56微克/立方米.
根據(jù)以上材料解答下列問(wèn)題:
(1)2015年PM2.5平均濃度約為 微克/立方米;
(2)選擇統(tǒng)計(jì)表或統(tǒng)計(jì)圖,將2013﹣2016年PM2.5平均濃度整理出來(lái);
(3)根據(jù)上述材料和繪制的統(tǒng)計(jì)表或統(tǒng)計(jì)圖中提供的信息,預(yù)估2017年的PM2.5平均濃度約為 微克/立方米;你的預(yù)估理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形 ABCD 中,點(diǎn) P 在射線 AB 上,連結(jié) PC,PD,M,N 分別為 AB,PC 中點(diǎn),連結(jié) MN 交 PD 于點(diǎn) Q.
(1)如圖 1,當(dāng)點(diǎn) P 與點(diǎn) B 重合時(shí),求∠QMB 的度數(shù);
(2)當(dāng)點(diǎn) P 在線段 AB 的延長(zhǎng)線上時(shí).
①依題意補(bǔ)全圖2
②小聰通過(guò)觀察、實(shí)驗(yàn)、提出猜想:在點(diǎn)P運(yùn)動(dòng)過(guò)程中,始終有QP=QM.小聰把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的幾種想法:
想法1延長(zhǎng)BA到點(diǎn) E,使AE=PB .要證QP=QM,只需證△PDA≌△ECB.
想法2:取PD 中點(diǎn)E ,連結(jié)NE,EA. 要證QP=QM只需證四邊形NEAM 是平行四邊形.
想 法3:過(guò)N 作 NE∥CB 交PB 于點(diǎn) E ,要證QP=QM ,只要證明△NEM∽△DAP.
……
請(qǐng)你參考上面的想法,幫助小聰證明QP=QM. (一種方法即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某興趣小組用無(wú)人機(jī)進(jìn)行航拍測(cè)高,無(wú)人機(jī)從1號(hào)樓和2號(hào)樓的地面正中間B點(diǎn)垂直起飛到高度為50米的A處,測(cè)得1號(hào)樓頂部E的俯角為60°,測(cè)得2號(hào)樓頂部F的俯角為45°.已知1號(hào)樓的高度為20米,則2號(hào)樓的高度為_____米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,∠BAC=30°,BC=2,點(diǎn)D是AC邊的中點(diǎn),E是直線BC上一動(dòng)點(diǎn),將線段DE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到線段DF,連接AF、EF,在點(diǎn)E的運(yùn)動(dòng)過(guò)程中線段AF的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點(diǎn) O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點(diǎn),的長(zhǎng)為( )
A.B.C.πD.2π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC,AC=8,AB=4,以點(diǎn)B為圓心作圓,當(dāng)⊙B與線段AC只有一個(gè)交點(diǎn)時(shí),則⊙B的半徑的取值范圍是( )
A.rB =B.4 < rB ≤
C.rB = 或4 < rB ≤D.rB為任意實(shí)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校詩(shī)詞知識(shí)競(jìng)賽培訓(xùn)活動(dòng)中,在相同條件下對(duì)甲、乙兩名學(xué)生進(jìn)行了10次測(cè)驗(yàn),他們的10次成績(jī)?nèi)缦拢▎挝唬悍郑赫、分析過(guò)程如下,請(qǐng)補(bǔ)充完整.
(1)按如下分?jǐn)?shù)段整理、描述這兩組數(shù)據(jù):
成績(jī)x 學(xué)生 | 70≤x≤74 | 75≤x≤79 | 80≤x≤84 | 85≤x≤89 | 90≤x≤94 | 95≤x≤100 |
甲 | ______ | ______ | ______ | ______ | ______ | ______ |
乙 | 1 | 1 | 4 | 2 | 1 | 1 |
(2)兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:
學(xué)生 | 極差 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | ______ | 83.7 | ______ | 86 | 13.21 |
乙 | 24 | 83.7 | 82 | ______ | 46.21 |
(3)若從甲、乙兩人中選擇一人參加知識(shí)競(jìng)賽,你會(huì)選______(填“甲”或“乙),理由為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com