【題目】如圖,拋物線軸交于點(diǎn)和點(diǎn).1)已知點(diǎn)在第一象限的拋物線上,則點(diǎn)的坐標(biāo)是_______.(2)在(l)的條件下連接,為拋物線上一點(diǎn)且,則點(diǎn)的坐標(biāo)是_______

【答案】(1) (2)

【解析】

1)由題意把點(diǎn)坐標(biāo)代入函數(shù)解析式求出m,并由點(diǎn)在第一象限判斷點(diǎn)的坐標(biāo);

2)利用相似三角形相關(guān)性質(zhì)判定,并根據(jù)題意設(shè),則,表示P,把代入函數(shù)解析式從而得解.

解:(1)把點(diǎn)坐標(biāo)代入函數(shù)解析式

解得

點(diǎn)在第一象限

2作為特殊角,處理方法是作其補(bǔ)角

過點(diǎn)延長線于點(diǎn)

,

為等腰直角三角形

(因?yàn)?/span>,,所以考慮構(gòu)造一線三垂直,水平豎直作垂線)

過點(diǎn)軸于點(diǎn),于點(diǎn)

設(shè):,則

(注意咱們設(shè),為整數(shù),點(diǎn)在第三象限,橫縱坐標(biāo)為負(fù)數(shù),所以點(diǎn)的坐標(biāo)表示要注意正負(fù)。

代入函數(shù)解析式得

解得6舍去)

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,.將向內(nèi)翻折,點(diǎn) 落在上,記為,折痕為.若將沿向內(nèi)翻折,點(diǎn)恰好 落在上,記為,則的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:幾個全等的正多邊形依次有一邊重合,排成一圈,中間可以圍成一個正多邊形,我們稱作正多邊形的環(huán)狀連接。如圖,我們可以看作正六邊形的環(huán)狀連接,中間圍成一個邊長相等的正六邊形;若正八邊形作環(huán)狀連接,中間可以圍的正多邊形的邊數(shù)為;

若正八邊形作環(huán)狀連接,中間可以圍的正多邊形的邊數(shù)為________,若邊長為1的正n邊形作環(huán)狀連接,中間圍成的是等邊三角形,則這個環(huán)狀連接的外輪廓長為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,P是與圓心C不重合的點(diǎn),點(diǎn)P關(guān)于⊙C的限距點(diǎn)的定義如下:若P′為直線PC與⊙C的一個交點(diǎn),滿足r≤PP′≤2r,則稱P′為點(diǎn)P關(guān)于⊙C的限距點(diǎn),如圖為點(diǎn)P及其關(guān)于⊙C的限距點(diǎn)P′的示意圖.

(1)當(dāng)⊙O的半徑為1.

①分別判斷點(diǎn)M(3,4),N(0),T(1,)關(guān)于⊙O的限距點(diǎn)是否存在?若存在,求其坐標(biāo);

②點(diǎn)D的坐標(biāo)為(2,0),DEDF分別切⊙O于點(diǎn)E,點(diǎn)F,點(diǎn)P在△DEF的邊上.若點(diǎn)P關(guān)于⊙O的限距點(diǎn)P′存在,求點(diǎn)P′的橫坐標(biāo)的取值范圍;

(2)保持(1)DE,F三點(diǎn)不變,點(diǎn)P在△DEF的邊上沿E→F→D→E的方向運(yùn)動,⊙C的圓心C的坐標(biāo)為(10),半徑為r,請從下面兩個問題中任選一個作答.

問題1:若點(diǎn)P關(guān)于⊙C的限距點(diǎn)P′存在,且P′隨點(diǎn)P的運(yùn)動所形成的路徑長為πr,則r的最小值為__________.

問題2:若點(diǎn)P關(guān)于⊙C的限距點(diǎn)P′不存在,則r的取值范圍為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,點(diǎn)O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連結(jié)AD.已知∠CAD=∠B,

(1)求證:AD是⊙O的切線.

(2)若BC=8,tanB=,求⊙O 的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD是由三個全等矩形拼成的,ACDE、EF、FG、HG、HB分別交于點(diǎn)P、Q、K、M、N,設(shè)EPQGKM、BNC的面積依次為S1、S2、S3.若S1+S3=30,則S2的值為( ).

A.6B.8

C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線()

1)寫出拋物線頂點(diǎn)的縱坐標(biāo) (用含a的代數(shù)式表示);

2)若該拋物線與x軸的兩個交點(diǎn)分別為點(diǎn)A和點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè),AB=4

①求a的值;

②記二次函數(shù)圖象在點(diǎn)A,B之間的部分為W(點(diǎn)A和點(diǎn)B),若直線()經(jīng)過(1,-1),且與圖形W有公共點(diǎn),結(jié)合函數(shù)圖象,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個頂點(diǎn)分別是A(﹣32),B04),C0,2).

1)將ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的A1B1C1,平移ABC,若點(diǎn)A的對應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對應(yīng)的A2B2C2;

2)若將A1B1C1繞某一點(diǎn)旋轉(zhuǎn)可以得到A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為測量觀光塔高度,如圖,一人先在附近一樓房的底端A點(diǎn)處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點(diǎn)處觀測觀光塔底部D處的俯角是30°.已知樓房高AB約是45m,請根據(jù)以上觀測數(shù)據(jù)求觀光塔的高.

查看答案和解析>>

同步練習(xí)冊答案