3.如圖,已知AB∥CD,∠2=2∠1,則∠3=(  )
A.90°B.120°C.60°D.15

分析 先根據(jù)平行線的性質,得出∠1=∠4,再根據(jù)∠2=2∠4,∠2+∠4=180°,求得∠4=60°,即可得到∠3的度數(shù).

解答 解:如圖,∵AB∥CD,
∴∠1=∠4,
又∵∠2=2∠1,
∴∠2=2∠4,
又∵∠2+∠4=180°,
∴∠4=60°,
∴∠3=60°,
故選:C.

點評 本題主要考查了平行線的性質以及對頂角相等的運用,解題時注意:兩直線平行,同位角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

13.計算
(1)-2×4-6+(-$\frac{1}{5}$)-2-3$\frac{4}{5}$
(2)(-10)3+[(-4)2+(1-32)×2]-(-0.28)÷0.04.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

14.如圖,四邊形ABCD是矩形,BC=1,則點M表示的數(shù)是( 。
A.2B.$\sqrt{5}-1$C.$\sqrt{5}$D.$\sqrt{10}-1$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.如圖,在?ABCD中,對角線AC,BD交于點O,E為AB中點,點F在CB的延長線上,且EF∥BD.
(1)求證;四邊形OBFE是平行四邊形;
(2)當線段AD和BD之間滿足什么條件時,四邊形OBFE是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.某個體經營戶銷售同一型號的A、B兩種品牌的服裝,平均每月共銷售60件,已知兩種品牌的成本和利潤如表所示,設平均每月的利潤為y元,每月銷售A品牌x件.
(1)寫出y關于x的函數(shù)關系式.
(2)如果每月投入的成本不超過6500元,所獲利潤不少于2920元,不考慮其他因素,那么銷售方案有哪幾種?
(3)在(2)的條件下要使平均每月利潤率最大,請直接寫出A、B兩種品牌的服裝各銷售多少件?
AB
成本(元/件)12085
利潤(元/件)6030

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

8.如圖,四邊形ABCD是正方形,點E表示的數(shù)是$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

15.已知x+$\frac{1}{x}$=2+$\sqrt{10}$,則x2+$\frac{1}{{x}^{2}}$的值為12+4$\sqrt{10}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.如圖,直線y=-x-4與拋物線y=ax2+bx+c相交于A,B兩點,其中A,B兩點的橫坐標分別為-1和-4,且拋物線過原點.
(1)求拋物線的解析式;
(2)在坐標軸上是否存在點C,使△ABC為等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)若點P是線段AB上不與A,B重合的動點,過點P作PE∥OA,與拋物線第三象限的部分交于一點E,過點E作EG⊥x軸于點G,交AB于點F,若S△BGF=3S△EFP,求$\frac{EF}{GF}$的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.(1)求下列各式中的x的值:25x2-16=0
(2)計算:$\sqrt{81}$+$\root{3}{-27}$+$\sqrt{(-\frac{2}{3})^{2}}$.

查看答案和解析>>

同步練習冊答案