【題目】(14分)盤(pán)錦紅海灘景區(qū)門(mén)票價(jià)格80元/人,景區(qū)為吸引游客,對(duì)門(mén)票價(jià)格進(jìn)行動(dòng)態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包括10人)不打折,10人以上超過(guò)10人的部分打b折,設(shè)游客為x人,門(mén)票費(fèi)用為y元,非節(jié)假日門(mén)票費(fèi)用(元)及節(jié)假日門(mén)票費(fèi)用(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.
(1)a= ,b= ;
(2)直接寫(xiě)出、與x之間的函數(shù)關(guān)系式;
(3)導(dǎo)游小王6月10日(非節(jié)假日)帶A旅游團(tuán),6月20日(端午節(jié))帶B旅游團(tuán)到紅海灘景區(qū)旅游,兩團(tuán)共計(jì)50人,兩次共付門(mén)票費(fèi)用3040元,求A、B兩個(gè)旅游團(tuán)各多少人?
【答案】(1)6,8;(2),=;(3)A團(tuán)有20人,B團(tuán)有30人.
【解析】
試題(1)由函數(shù)圖象,用購(gòu)票款數(shù)除以定價(jià)的款數(shù),得出a的值;用第11人到20人的購(gòu)票款數(shù)除以定價(jià)的款數(shù),得出b的值;
(2)利用待定系數(shù)法求正比例函數(shù)解析式求出,分x≤10與x>10,利用待定系數(shù)法求一次函數(shù)解析式求出與x的函數(shù)關(guān)系式即可;
(3)設(shè)A團(tuán)有n人,表示出B團(tuán)的人數(shù)為(50﹣n),然后分0≤n≤10與n>10兩種情況,根據(jù)(2)的函數(shù)關(guān)系式列出方程求解即可.
試題解析:(1)由圖象上點(diǎn)(10,480),得到10人的費(fèi)用為480元,∴a=×10=6;
由y2圖象上點(diǎn)(10,800)和(20,1440),得到20人中后10人費(fèi)用為640元,∴b=×10=8;
(2)設(shè),∵函數(shù)圖象經(jīng)過(guò)點(diǎn)(0,0)和(10,480),∴,∴=48,∴;
0≤x≤10時(shí),設(shè),∵函數(shù)圖象經(jīng)過(guò)點(diǎn)(0,0)和(10,800),∴,∴=80,∴,x>10時(shí),設(shè),∵函數(shù)圖象經(jīng)過(guò)點(diǎn)(10,800)和(20,1440),∴,∴,∴;
∴=;
(3)設(shè)A團(tuán)有n人,則B團(tuán)的人數(shù)為(50﹣n),當(dāng)0≤n≤10時(shí),48n+80(50﹣n)=3040,解得n=30(不符合題意舍去),當(dāng)n>10時(shí),48n+64(50﹣n)+160=3040,解得n=20,則50﹣n=50﹣20=30.
答:A團(tuán)有20人,B團(tuán)有30人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線(xiàn)CO上的一個(gè)動(dòng)點(diǎn),∠AOC=60°,則當(dāng)△PAB為直角三角形時(shí),AP的長(zhǎng)為 __________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線(xiàn)段AB、OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),PC+PD值最小時(shí)點(diǎn)P的坐標(biāo)為( )
A.(﹣3,0) B.(﹣6,0) C.(,0) D.(,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圖①中拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)D(﹣1,0)、C(0,﹣1)、E(1,0).
(1)求圖①中拋物線(xiàn)的函數(shù)表達(dá)式;
(2)將圖①中拋物線(xiàn)向上平移一個(gè)單位,再繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)180°后得到圖②中拋物線(xiàn),則圖②中拋物線(xiàn)的函數(shù)表達(dá)式為;
(3)圖②中拋物線(xiàn)與直線(xiàn)y=﹣ x﹣ 相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),如圖③,求點(diǎn)A、B的坐標(biāo),并直接寫(xiě)出當(dāng)一次函數(shù)的值大于二次函數(shù)的值時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:一個(gè)矩形的兩鄰邊之比為 ,則稱(chēng)該矩形為“特比矩形”.
(1)如圖①,在“特比矩形”ABCD中, = ,求∠AOD的度數(shù);
(2)如圖②,特比矩形CDEF的邊CD在半圓O的直徑AB上,頂點(diǎn)E、F在半圓上,已知直徑AB= ,求矩形CDEF的面積;
(3)在平面直角坐標(biāo)系xOy中,⊙O的半徑為 ,點(diǎn)Q的坐標(biāo)為(q,2 ),如果在⊙O上存在一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線(xiàn)與過(guò)點(diǎn)Q作y軸的垂線(xiàn)交于點(diǎn)M,過(guò)點(diǎn)P作y軸的垂線(xiàn)與過(guò)點(diǎn)Q作x軸的垂線(xiàn)交于點(diǎn)N,以點(diǎn)P、Q、M、N為頂點(diǎn)的矩形是“特比矩形”,請(qǐng)直接寫(xiě)出q的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校實(shí)施課程改革,為初三學(xué)生設(shè)置了A,B,C,D,E,F(xiàn)共六門(mén)不同的拓展性課程,現(xiàn)隨機(jī)抽取若干學(xué)生進(jìn)行了“我最想選的一門(mén)課”調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表(不完整)
選修課 | A | B | C | D | E | F |
人數(shù) | 20 | 30 |
根據(jù)圖標(biāo)提供的信息,下列結(jié)論錯(cuò)誤的是( )
A.這次被調(diào)查的學(xué)生人數(shù)為200人
B.扇形統(tǒng)計(jì)圖中E部分扇形的圓心角為72°
C.被調(diào)查的學(xué)生中最想選F的人數(shù)為35人
D.被調(diào)查的學(xué)生中最想選D的有55人
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)過(guò)程中遇到這樣一個(gè)問(wèn)題:
“一個(gè)木箱漂浮在河水中,隨河水向下游漂去,在木箱上游和木箱下游各有一條小船,分別為甲船和乙船,兩船距木箱距離相等,同時(shí)劃向木箱,若兩船在靜水中劃行的速度是30m/min,那么哪條小船先遇到木箱?”
小明是這樣分析解決的:
小明想通過(guò)比較甲乙兩船遇見(jiàn)木箱的時(shí)間,知道哪條小船先遇見(jiàn)木箱.設(shè)甲船遇見(jiàn)木箱的時(shí)間為xmin,乙船遇見(jiàn)木箱的時(shí)間為ymin,開(kāi)始時(shí)兩船與木箱距離相等,都設(shè)為am,如圖1.
如圖2,利用甲船劃行的路程﹣木箱漂流的路程=開(kāi)始時(shí)甲船與木箱的距離:
列方程:x(30+5)﹣5x=a
解得,x=
所以甲船遇見(jiàn)木箱的時(shí)間為min.
(1)參照小明的解題思路繼續(xù)完成上述問(wèn)題;
(2)借鑒小明解決問(wèn)題的方法和(1)中發(fā)現(xiàn)的結(jié)論解決下面問(wèn)題:
問(wèn)題:“在一河流中甲乙兩條小船,同時(shí)從A地出發(fā),甲船逆流而上,乙船順流而下;劃行10分鐘后,乙船發(fā)現(xiàn)船上木箱不知何時(shí)掉入水中,乙船立即通知甲船,兩船同時(shí)掉頭尋找木箱,若兩船在靜水中劃行的速度是v(單位:m/min,v大于5),水流速度是5m/min,兩船同時(shí)遇見(jiàn)木箱,那么木箱是出發(fā)幾分鐘后掉入水中的?”
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,廣場(chǎng)中心菱形花壇ABCD的周長(zhǎng)是32米,∠A=60°,則A、C兩點(diǎn)之間的距離為( )
A. 4米 B. 米 C. 8米 D. 米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com