【題目】如圖,在邊長為個單位長度的小正方形組成的網(wǎng)格中,、正方形、正方形的頂點均在格點上.
(1)以格點為原點,建立合適的平面直角坐標系,使得、坐標分別為、,則點的坐標為______,點的坐標為_______;
(2)利用面積計算線段________;
(3)點為直線上一動點,求的最小值.
【答案】(1);;(2);(3)3
【解析】
(1)根據(jù)點B、C的坐標可知坐標原點的位置,由此得到點A、D的坐標;
(2)根據(jù)面積的和差即可得出FC的平方,進而可求得FC的長.
(3)根據(jù)垂線段最短可知當CH⊥BF時,CH最短,再利用面積法即可求得CH的最小值.
解:(1)平面直角坐標系如圖所示,
此時點A的坐標為(﹣4,1),點D的坐標為(7,﹣2).
(2)如圖,
由圖形可知:△FNC≌△CPD≌△DQE≌△EMF,
∴S正方形FCDE=S正方形MNPQ﹣4S△FNC=42﹣4××3×1=10=FC2,
∴FC=;
(3)解:如圖,過點C作時,由題意可知,此時的有最小值,
由圖可知:,,
,
.
的最小值為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊塑料矩形模板ABCD,長為10cm,寬為4cm,將你手中足夠大的直角三角板 PHF 的直角頂點P落在AD邊上(不與A、D重合),在AD上適當移動三角板頂點P:
①能否使你的三角板兩直角邊分別通過點B與點C?若能,請你求出這時 AP 的長;若不能,請說明理由;
②再次移動三角板位置,使三角板頂點P在AD上移動,直角邊PH 始終通過點B,另一直角邊PF與DC的延長線交于點Q,與BC交于點E,能否使CE=2cm?若能,請你求出這時AP的長;若不能,請你說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為喜迎中華人民共和國成立周年,某中學將舉行以“追尋紅色信仰,傳承紅色基因”為主題的“重走長征路”活動.七年級需要在文具店購買國旗圖案貼紙和小紅旗分發(fā)給學生作為活動道具,已知每袋貼紙有張,每袋小紅旗有面,貼紙和小紅旗需整袋購買.甲、乙兩家文具店的標價相同,每袋貼紙價格比每袋小紅旗價格少元,而且袋貼紙與袋小紅旗價格相同.
(1)水每袋國旗圖案貼紙和每袋小紅旗的價格各是多少元?
(2)如果購買貼紙和小紅旅共袋,給每位參加活動的學生分發(fā)國旗圖案貼紙張,小紅旗面,恰好全部分完,請問該校七年級有多少名學生?
(3)在(2)條件下,兩家文具店的優(yōu)惠如下:
甲文具店:全場商品購物超過元后,超出元的部分打八五折;
乙文具店:相同商品,“買十件贈一件" .
請問在哪家文具店購買比較優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校在進行防溺水安全教育活動中,將以下幾種在游泳時的注意事項寫在紙條上并折好,內(nèi)容分別是:①互相關(guān)心;②互相提醒;③不要相互嬉水;④相互比潛水深度;⑤選擇水流湍急的水域;⑥選擇有人看護的游泳池.小穎從這6張紙條中隨機抽出一張,抽到內(nèi)容描述正確的紙條的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,已知直線l1∥l2,且l3和l1,l2分別交于A,B兩點,點P在線段AB上,則∠1,∠2,∠3之間的等量關(guān)系是____;
(2)如圖②,點A在B處北偏東40°方向,在C處北偏西45°方向,則∠BAC=____°.
(3)如圖③,∠ABD和∠BDC的平分線交于點E,BE交AB于點F,∠1+∠2=90°,試說明:AB∥AB,并探究∠2與∠3的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,,.
備用圖
(1)直接寫出_________;
(2)已知點,滿足,求的值;
(3)如圖,把直線以每秒個單位長度的速度向右平移,求平移多少秒時該直線恰好經(jīng)過點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點G在對角線BD上,GE⊥CD,GF⊥BC,AD=1 500 m,小敏行走的路線為B→A→G→E,小聰行走的路線為B→A→D→E→F.若小敏行走的路程為3 100 m,則AG+GE=______m,由此可得小聰行走的路程為_______m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某攔水大壩的橫斷面為梯形ABCD,AE、DF為梯形的高,其中迎水坡AB的坡角α=45°,坡長AB= 米,背水坡CD的坡度i=1: (i為DF與FC的比值),則背水坡CD的坡長為米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2的正方形,點G是BC延長線上一點,連接AG,點E、F分別在AG上,連接BE、DF,∠1=∠2,∠3=∠4.
(1)證明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com