【題目】如圖,在平面直角坐標(biāo)系中,位于第二象限的點(diǎn)在反比例函數(shù)的圖像上,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,直線經(jīng)過點(diǎn),且與反比例函數(shù)的圖像交于點(diǎn).
(1)當(dāng)點(diǎn)的橫坐標(biāo)是-2,點(diǎn)坐標(biāo)是時(shí),分別求出的函數(shù)表達(dá)式;
(2)若點(diǎn)的橫坐標(biāo)是點(diǎn)的橫坐標(biāo)的4倍,且的面積是16,求的值.
【答案】(1),;(2).
【解析】
(1)先將點(diǎn)C坐標(biāo)代入,利用待定系數(shù)法可求得y1的解析式,繼而求得點(diǎn)A的坐標(biāo),點(diǎn)B坐標(biāo),根據(jù)B、C坐標(biāo)利用待定系數(shù)法即可求得y2的解析式;
(2)分別過點(diǎn)作軸于點(diǎn),軸于點(diǎn),連接,由三角形中線的性質(zhì)可得,再根據(jù)反比例函數(shù)的比例系數(shù)的幾何意義可得,從而可得,設(shè)點(diǎn)的橫坐標(biāo)為,則點(diǎn)坐標(biāo)表示為、,繼而根據(jù)梯形的面積公式列式進(jìn)行計(jì)算即可.
(1)由已知,點(diǎn)在的圖象上,
∴,∴,
∵點(diǎn) 的橫坐標(biāo)為,∴點(diǎn)為,
∵點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,
∴為,
把,代入得,
解得:,
∴;
(2)分別過點(diǎn)作軸于點(diǎn),軸于點(diǎn),連接,
∵為中點(diǎn) ,
∴
∵點(diǎn)在雙曲線上,
∴
∴ ,
設(shè)點(diǎn)的橫坐標(biāo)為,
則點(diǎn)坐標(biāo)表示為、,
∴,
解得 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以線段AC為對角線的四邊形ABCD(它的四個(gè)頂點(diǎn)A,B,C,D按順時(shí)針方向排列),已知AB=BC=CD,∠ABC=100°,∠CAD=40°,則∠BCD的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點(diǎn)E為BC邊上一點(diǎn),AE和BD交于點(diǎn)F,已知△ABF的面積等于 6,△BEF的面積等于4,則四邊形CDFE的面積等于___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,直線分別交、于點(diǎn),,,.
(1)已知,求;
(2)求證:平分;
(3)若,則的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為開展“學(xué)生每天鍛煉1小時(shí)”的活動,我市某中學(xué)根據(jù)學(xué)校實(shí)際情況,決定開設(shè)A:毽子,B:籃球,C:跑步,D:跳繩四種運(yùn)動項(xiàng)目.為了了解學(xué)生最喜歡哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖.請結(jié)合圖中信息解答下列問題:
(1)該校本次調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)計(jì)算本次調(diào)查學(xué)生中喜歡“跑步”的人數(shù)和百分比,并請將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在本次調(diào)查的學(xué)生中隨機(jī)抽取1人,他喜歡“跑步”的概率有多大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的一點(diǎn),連結(jié)AC并延長至D,使CD=AC,連結(jié)BD,作CE⊥BD,垂足為E。
(1)線段AB與DB的大小關(guān)系為 ,請證明你的結(jié)論;
(2)判斷CE與⊥⊙O的位置關(guān)系,并證明;
(3)當(dāng)△CED與四邊形ACEB的面積比是1:7時(shí),試判斷△ABD的形狀,并證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“母親節(jié)”前期,某花店購進(jìn)康乃馨和玫瑰兩種鮮花,銷售過程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價(jià)1元促銷,降價(jià)后30元可購買玫瑰的數(shù)量是原來購買玫瑰數(shù)量的1.5倍,求降價(jià)后每枝玫瑰的售價(jià)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為定點(diǎn),定直線,是直線上一動點(diǎn),點(diǎn)分別為的中點(diǎn),對下列各值: ①線段MN的長;②△PAB的周長;③△PMN的面積;④直線MN,AB之間的距離;⑤∠APB的大小.其中不會隨點(diǎn)的移動而變化的是( )
A.②③B.②⑤C.①③④D.④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,丁軒同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點(diǎn)P時(shí),發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行20m到達(dá)Q點(diǎn)時(shí),發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學(xué)的身高是1.5m,兩個(gè)路燈的高度都是9m,則兩路燈之間的距離是( 。
A. 24m B. 25m C. 28m D. 30m
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com