【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問題:

尺規(guī)作圖:作已知角的角平分線

已知:如圖,已知.

求作: 的角平分線.

小霞的作法如下:

(1)如圖,在平面內(nèi)任取一點;

2以點為圓心, 為半徑作圓,交射線于點,交射線于點;

3連接,過點作射線垂直線段,交于點

4連接.

所以射線為所求.

老師說:“小霞的作法正確.”

請回答:小霞的作圖依據(jù)是___________________________________________

【答案】(1)垂直于弦的直徑平分弦,并平分弦所對的兩條弧;(2)同弧或等弧所對的圓周角相等(3)角平分線的定義

【解析】解:小霞的作圖依據(jù)是:(1垂直于弦的直徑平分弦,并平分弦所對的兩條弧;(2)同弧或等弧所對的圓周角相等(3)角平分線的定義故答案為:1垂直于弦的直徑平分弦,并平分弦所對的兩條。唬2)同弧或等弧所對的圓周角相等(3)角平分線的定義

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】101【問題發(fā)現(xiàn)】小明遇到這樣一個問題:

如圖1ABC是等邊三角形,點DBC的中點,且滿足ADE=60°,DE交等邊三角形外角平分線CE所在直線于點E,試探究ADDE的數(shù)量關(guān)系

(1)小明發(fā)現(xiàn),過點DDF//AC,交AC于點F,通過構(gòu)造全等三角形,經(jīng)過推理論證,能夠使問題得到解決,請直接寫出ADDE的數(shù)量關(guān)系: ;

2【類比探究】如圖2,當(dāng)點D是線段BCB,C任意一點時其它條件

不變,試猜想ADDE之間的數(shù)量關(guān)系,并證明你的結(jié)論

3【拓展應(yīng)用】當(dāng)點D在線段BC的延長線上,且滿足CD=BC其它條件不變時,

請直接寫出ABCADE的面積之比

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是⊙O的直徑,點的中點,連接并延長至點,使,點上一點,且, 的延長線交的延長線于點 交⊙O于點,連接.

1)求證: 是⊙O的切線;

2)當(dāng)時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD和正方形CEFG邊長分別為ab,正方形CEFG繞點C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;BEDG;DE2+BG2=2a2+2b2,其中正確結(jié)論有( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距360千米,一輛販毒車從甲地往乙地接頭取貨,警方截取情報后,立即組織干警從甲地出發(fā),前往乙地緝拿這伙犯罪分子,結(jié)果警車與販毒車同時到達(dá),將犯罪分子一網(wǎng)打盡.已知販毒車比警車早出發(fā)1小時15分,警車與販毒車的速度比為43,求販毒車和警車的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填寫證明的理由:

已知,如圖ABCD,EFCG分別是∠ABC、∠ECD的角平分線.

求證:EFCG

證明:∵ABCD(已知)

∴∠AEC=∠ECD   

EF平分∠AECCG平分∠ECD(已知)

∴∠1   ,∠2   (角平分線的定義)

∴∠1=∠2   

EFCG   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育用品商店購進(jìn)了足球和排球共20個,一共花了1360元,進(jìn)價和售價如表:

足球

排球

進(jìn)價(元/個)

80

50

售價(元/個)

95

60

l)購進(jìn)足球和排球各多少個?

2)全部銷售完后商店共獲利潤多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現(xiàn)計劃開鑿隧道A,B兩地直線貫通,經(jīng)測量得:CAB=30°,CBA=45°,AC=20km,求隧道開通后與隧道開通前相比,從A地到B地的路程將縮短多少?(結(jié)果精確到0.1km,參考數(shù)據(jù): ≈1.414, ≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠ACB=90°,AC > BC,CDRt△ABC的高,EAC的中點,ED的延長線與CB的延長線相交于點F.

(1)求證:DFBFCF的比例中項;

(2)在AB上取一點G,如果AE·AC=AG·AD,求證:EG·CF=ED·DF.

查看答案和解析>>

同步練習(xí)冊答案