【題目】如圖,拋物線(xiàn)軸交于兩點(diǎn),與軸交于點(diǎn),且

(1)求拋物線(xiàn)的解析式和頂點(diǎn)的坐標(biāo);

(2)判斷的形狀,證明你的結(jié)論;

(3)點(diǎn)軸上的一個(gè)動(dòng)點(diǎn),當(dāng)的周長(zhǎng)最小時(shí),求的值.

【答案】(1)點(diǎn)坐標(biāo)為;(2)為直角三角形;(3)

【解析】

(1)把A點(diǎn)坐標(biāo)代入可求得b的值,可求得拋物線(xiàn)的解析式,再求D點(diǎn)坐標(biāo)即可;

(2)由解析式可求得A、B、C的坐標(biāo),可求得AB、BC、AC的長(zhǎng),由勾股定理的逆定理可判定△ABC為直角三角形;

(3)先求得C點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)E,連接DE,與軸交于點(diǎn)M,則M即為所求,可求得DE的解析式,令其y=0,可求得M點(diǎn)的坐標(biāo),可求得m.

解:(1)∵點(diǎn)在拋物線(xiàn)上,

,解得,

∴ 拋物線(xiàn)解析式為,

,

點(diǎn)坐標(biāo)為;

(2)為直角三角形,證明如下:

中,令可得,解得

,且,

,,

由勾股定理可求得,,

,

為直角三角形;

(3)∵

點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,

如圖,連接,交軸于點(diǎn),則即為滿(mǎn)足條件的點(diǎn),

設(shè)直線(xiàn)解析式為,

坐標(biāo)代入可得,解得

∴ 直線(xiàn)解析式為,令,可得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)三角形紙片ABC,面積為25BC的長(zhǎng)為10,∠B、∠C都為銳角,MAB邊上的一動(dòng)點(diǎn)(MA、B不重合),過(guò)點(diǎn)MMNBCAC于點(diǎn)N,設(shè)MN=x
1)用x表示△AMN的面積;
2)△AMN沿MN折疊,使△AMN緊貼四邊形BCNM(邊AM、AN落在四邊形BCNM所在的平面內(nèi)),設(shè)點(diǎn)A落在平面BCNM內(nèi)的點(diǎn)A′,△AMN與四邊形BCNM重疊部分的面積為y
①用含x的代數(shù)式表示y,并寫(xiě)出x的取值范圍.
②當(dāng)x為何值時(shí),重疊部分的面積y最大,最大為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在平面直角坐標(biāo)系中,將ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1x軸上,再將AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到A1B1C2的位置,點(diǎn)C2x軸上,將A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到A2B2C2的位置,點(diǎn)A2x軸上,依次進(jìn)行下去.若點(diǎn)A,0),B(0,2),則點(diǎn)B2016的坐標(biāo)為____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠B=∠C30°,點(diǎn)OBC邊上一點(diǎn),以點(diǎn)O為圓心、OB為半徑的圓經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)D.

試說(shuō)明AC與⊙O相切;

,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(定義)從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線(xiàn)與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線(xiàn)段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線(xiàn)段叫做這個(gè)三角形的完美分割線(xiàn).

1)如圖1,△ABC中,∠A40°,∠B60°CD平分∠ACB.求證:CD為△ABC的完美分割線(xiàn);

2)在△ABC中,CD是△ABC的完美分割線(xiàn),其中△ACD為等腰三角形,設(shè)∠Ax°,∠By°,則yx之間的關(guān)系式為_____________________________;

3)如圖2,△ABC中,AC2BC,CD是△ABC的完美分割線(xiàn),且△ACD是以CD為底邊的等腰三角形,求完美分割線(xiàn)CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊ABC內(nèi)接于⊙OP是弧AB上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),連接AP、BP,過(guò)點(diǎn)CCMBPPA的延長(zhǎng)線(xiàn)于點(diǎn)M

1)求∠APC的度數(shù).

2)求證:PCM為等邊三角形.

3)若PA1PB3,求PCM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用合適的方法解方程:

1)(2t+3232t+3

2)(2x129x22

32x25x1

4x2+4x50

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)x軸于點(diǎn)A8,0),直線(xiàn)經(jīng)過(guò)點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)P是直線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Px軸的垂線(xiàn),過(guò)點(diǎn)By軸的垂線(xiàn),兩條垂線(xiàn)交于點(diǎn)D,連接PB,設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)若點(diǎn)P的橫坐標(biāo)為m,則PD的長(zhǎng)度為 (用含m的式子表示);

(2)如圖1,已知點(diǎn)Q是直線(xiàn)上的一個(gè)動(dòng)點(diǎn),點(diǎn)Ex軸上的一個(gè)動(dòng)點(diǎn),是否存在以A,B,E,Q為頂點(diǎn)的平行四邊形,若存在,求出E的坐標(biāo);若不存在,說(shuō)明理由;

(3)如圖2,將BPD繞點(diǎn)B旋轉(zhuǎn),得到BD′P′,且旋轉(zhuǎn)角∠PBP′=OCA,當(dāng)點(diǎn)P的對(duì)應(yīng)點(diǎn)P′落在坐標(biāo)軸上時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y=-x2+1,下列結(jié)論:
①拋物線(xiàn)開(kāi)口向上;
②拋物線(xiàn)與x軸交于點(diǎn)(-10)和點(diǎn)(1,0);
③拋物線(xiàn)的對(duì)稱(chēng)軸是y軸;
④拋物線(xiàn)的頂點(diǎn)坐標(biāo)是(0,1);
⑤拋物線(xiàn)y=-x2+1是由拋物線(xiàn)y=-x2向上平移1個(gè)單位得到的.
其中正確的個(gè)數(shù)有(

A. 5個(gè)B. 4個(gè)C. 3個(gè)

D. 2個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案