【題目】如圖,在兩個全等的等腰直角三角形ABC和EDC中,∠ACB=∠ECD=90°,點A與點E重合,點D與點B重合.現(xiàn)△ABC不動,把△EDC繞點C按順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<90°).
(1)如圖②,AB與CE交于點F,ED與AB,BC分別交于點M,H.求證:CF=CH;
(2)如圖③,當α=45°時,試判斷四邊形ACDM的形狀,并說明理由;
(3)如圖②,在△EDC繞點C旋轉(zhuǎn)的過程中,連結(jié)BD,當旋轉(zhuǎn)角α的度數(shù)為多少時,△BDH是等腰三角形?
【答案】(1)證明見解析;(2)四邊形ACDM是菱形.理由見解析;(3)α=30°,即當旋轉(zhuǎn)角α的度數(shù)為30°時,△BDH是等腰三角形.
【解析】
(1)根據(jù)△ABC和△EDC是全等的等腰直角三角形,可得:∠A=∠B=∠E=∠D=45°,CA=CB=CE=CD,再根據(jù)△ABC不動,把△EDC繞點C按順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為α,
進而可得:CA=CD,∠A=∠D,∠ACE=∠BCD=α,根據(jù)全等三角形的判定定理可得:△CAF≌△CDH,根據(jù)全等三角形的性質(zhì)可得:CF=CH,
(2)根據(jù)∠ACE=∠BCD=45°,而∠A=45°,可得:∠AFC=90°,而∠FCD=90°,進而可得:AB∥CD,同理可得AC∥DE,根據(jù)平行四邊形的判定可得:四邊形ACDM是平行四邊形,根據(jù)CA=CD,根據(jù)菱形的定義可得:四邊形ACDM是菱形,
(3)根據(jù)CB=CD,∠BCD=α,可得:∠CBD=∠CDB=(180°-α),繼而可得:∠HBD>∠BDH,
即當DB=DH或BH=BD時,△BDH是等腰三角形,根據(jù)∠BHD=∠HCD+∠HDC=α+45°,然后分類討論:當DB=DH,則∠HBD=∠BHD,即(180°-α)=α+45°,解得α=30°,當BH=BD,則∠BHD=∠BDH,即α+45°=(180°-α)-45°,解得α=0°(舍去),因此α=30°,即當旋轉(zhuǎn)角α的度數(shù)為30°時,△BDH是等腰三角形.
(1)證明:∵△ABC和△EDC是全等的等腰直角三角形,
∴∠A=∠B=∠E=∠D=45°,CA=CB=CE=CD,
∵△ABC不動,把△EDC繞點C按順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為α,
∴CA=CD,∠A=∠D,∠ACE=∠BCD=α,
∴△CAF≌△CDH,
∴CF=CH,
(2)四邊形ACDM是菱形,理由如下:
∵∠ACE=∠BCD=45°,而∠A=45°,
∴∠AFC=90°,而∠FCD=90°,
∴AB∥CD,
同理可得AC∥DE,
∴四邊形ACDM是平行四邊形,
而CA=CD,
∴四邊形ACDM是菱形,
(3)∵CB=CD,∠BCD=α,
∴∠CBD=∠CDB=(180°-α),
∴∠HBD>∠BDH,
∴當DB=DH或BH=BD時,△BDH是等腰三角形,
∵∠BHD=∠HCD+∠HDC=α+45°,
當DB=DH,則∠HBD=∠BHD,即(180°-α)=α+45°,解得α=30°,
當BH=BD,則∠BHD=∠BDH,即α+45°=(180°-α)-45°,解得α=0°(舍去),
∴α=30°,即當旋轉(zhuǎn)角α的度數(shù)為30°時,△BDH是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)為常數(shù).
求該二次函數(shù)圖象與x軸的交點坐標;
求該二次函數(shù)圖象的頂點P的坐標;
如將該函數(shù)的圖象向左平移3個單位,再向上平移1個單位,得到函數(shù)的圖象,直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是( 。
A. a >b>c
B. 一次函數(shù)y=ax +c的圖象不經(jīng)第四象限
C. m(am+b)+b<a(m是任意實數(shù))
D. 3b+2c>0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8,CB=6,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為t秒.
(1)當t=2秒時,求PQ的長;
(2)求出發(fā)時間為幾秒時,△PQB是等腰三角形?
(3)若Q沿B→C→A方向運動,則當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+2分別與x軸、y軸相交于點A、點B
(1)求點A和點B的坐標;
(2)若點P是y軸上的一點,設△AOB、△ABP的面積分別為S△AOB與S△ABP,且S△ABP=2S△AOB,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:和同一平面內(nèi)的點.
(1)如圖1,若點在邊上過點作交于點,作交于點.根據(jù)題意,請在圖1中補全圖形,并直接寫出與的數(shù)量關(guān)系;
(2)如圖2,若點在的延長線上,且,.請判斷與的位置關(guān)系并說明理由;
(3)如圖3,點是外部的一點,過點作交直線于點,作交直線于點,請直接寫出與的數(shù)量關(guān)系,并圖3中補全圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=5,AC=8,BD,CD分別平分∠ABC,∠ACB,過點D作直線平行于BC,交AB,AC于E,F,則△AEF的周長為( 。
A.11B.13C.15D.18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是ΔABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,BC恰好平分∠ABF,下列結(jié)論錯誤的是( )
A.DE=DFB.AC=3DFC.BD=DCD.AD⊥BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了鼓勵節(jié)能降耗,某市規(guī)定如下用電收費標準:用戶每月的用電量不超過120度時,電價為x元/度;超過120度時,不超過部分仍為x元/度,超過部分為y元/度.已知某用戶5月份用電115度,交電費69元,6月份用電140度,付電費94元.
(1)求x、y的值;
(2)若該用戶計劃7月份所付電費不超過83元,問該用戶7月份最多可用電多少度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com