【題目】二次函數(shù)圖像如圖,對稱軸為直線,則下列敘述正確的是( )
A.ac>0B.b2<4acC.b=2aD.a+b+c>0
【答案】C
【解析】
由拋物線開口方向得到a<0,由圖像與y軸的交點可知c<0,再根據(jù)拋物線的對稱軸為直線x=-=-1,得到b=2a,所以b<0,2a-b=0;根據(jù)拋物線與x軸的交點個數(shù)得到b2-4ac>0;根據(jù)自變量為1時,對應(yīng)的函數(shù)值小于0得到a+b+c<0.
解:∵拋物線開口向下,
∴a<0,
∵c<0,
∴ac>0,故A錯誤;
∵拋物線與x軸有兩個交點,
∴b2-4ac>0,即b2>4ac,所以B錯誤;
∵拋物線的對稱軸為直線x=-=-1,
∴b=2a,故C正確;
∵當(dāng)x=1時,y<0,
∴a+b+c<0,所以D錯誤.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某藥廠銷售部門根據(jù)市場調(diào)研結(jié)果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進行預(yù)測,并建立如下模型:設(shè)第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)p=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關(guān)系:
Q=
(1)當(dāng)8<t≤24時,求P關(guān)于t的函數(shù)解析式;
(2)設(shè)第t個月銷售該原料藥的月毛利潤為W(單位:萬元).
①求W關(guān)于t的函數(shù)解析式;
②第幾個月銷售該原料藥的月毛利潤最大?對應(yīng)的月銷售量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx+2(a≠0)與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C,連接BC.
(1)求該拋物線的解析式,并寫出它的對稱軸;
(2)點D為拋物線對稱軸上一點,連接CD、BD,若∠DCB=∠CBD,求點D的坐標;
(3)已知F(1,1),若E(x,y)是拋物線上一個動點(其中1<x<2),連接CE、CF、EF,求△CEF面積的最大值及此時點E的坐標.
(4)若點N為拋物線對稱軸上一點,拋物線上是否存在點M,使得以B,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店以60元/千克的單價新進一批商品,經(jīng)調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量y(千克)與銷售單價x(元/千克)之間的函數(shù)關(guān)系式如圖所示.
(1)根據(jù)圖象求出y與x的函數(shù)表達式:并寫出自變量x的取值范圍;
(2)當(dāng)銷售單價應(yīng)定為多少元時,商店獲得利潤達到5400元?
(3)當(dāng)銷售單價應(yīng)定為多少元時,商店獲得利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線交軸的負半軸于點.點是軸正半軸上一點,點關(guān)于點的對稱點恰好落在拋物線上.過點作軸的平行線交拋物線于另一點.若點的橫坐標為,則的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與軸、軸交與、兩點,拋物線經(jīng)過點、.
備用圖
(1)求這個拋物線的解析式;
(2)點為線段上一個動點,過點作垂直于軸的直線交拋物線于點,交直線于點.
①點是直線上方拋物線上一點,當(dāng)相似時,求出點的坐標.
②若,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有、型兩種客車,它們的載客量和租金如下表:
型客車 | 型客車 | |
載客量/(人/輛) | ||
租金/(元/輛) |
某學(xué)校計劃在總費用元的限額內(nèi),租用、型客車共5輛送九年級師生集體外出活動.
(Ⅰ)設(shè)租用型客車輛(為非負整數(shù)),根據(jù)題意,用含的式子填寫下表:
車輛數(shù)/輛 | 載客量 | 租金/元 | |
型客車 | |||
型客車 |
(Ⅱ)若九年級師生共有人,請給出能完成此項任務(wù)的最節(jié)省費用的租車方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】瑞安市曹村鎮(zhèn)“八百年燈會”成為溫州“申遺”的寶貴項目.某公司生產(chǎn)了一種紀念花燈,每件紀念花燈制造成本為18元.設(shè)銷售單價x(元),每日銷售量y(件)每日的利潤w(元).在試銷過程中,每日銷售量y(件)、每日的利潤w(元)與銷售單價x(元)之間存在一定的關(guān)系,其幾組對應(yīng)量如下表所示:
(元) | 19 | 20 | 21 | 30 |
(件) | 62 | 60 | 58 | 40 |
(1)根據(jù)表中數(shù)據(jù)的規(guī)律,分別寫出毎日銷售量y(件),每日的利潤w(元)關(guān)于銷售單價x(元)之間的函數(shù)表達式.(利潤=(銷售單價﹣成本單價)×銷售件數(shù)).
(2)當(dāng)銷售單價為多少元時,公司每日能夠獲得最大利潤?最大利潤是多少?
(3)根據(jù)物價局規(guī)定,這種紀念品的銷售單價不得高于32元,如果公司要獲得每日不低于350元的利潤,那么制造這種紀念花燈每日的最低制造成本需要多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com