【題目】如圖,BAC=45°,AB=8,要使?jié)M足條件的ABC惟一確定,那么BC的長度x的取值范圍是

【答案】或x8

【解析】

試題分析:過B點(diǎn)作BD垂直于AC于D點(diǎn),則三角形ABD是等腰直角三角形;再延長AD到E點(diǎn),使DE=AD,①當(dāng)C點(diǎn)和D點(diǎn)重合時,三角形ABC是等腰直角三角形,BC=.這個三角形是唯一的;

②當(dāng)C點(diǎn)和E點(diǎn)重合時,三角形ABC也是等腰直角三角形,BC=8,這個三角形也是唯一的;

③當(dāng)C點(diǎn)在線段AE的延長線上時,即x大于BE,也就是x大于8,這時,三角形ABC也是唯一的;

綜上所述,BAC=45°,AB=8,要使ABC唯一確定,那么BC的長度x滿足的條件是:x=或x大于或等于8.故答案為:或x8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】表中所列 的7對值是二次函數(shù) 圖象上的點(diǎn)所對應(yīng)的坐標(biāo),其中

x

y

7

m

14

k

14

m

7

根據(jù)表中提供的信息,有以下4 個判斷:

;② ;③ 當(dāng)時,y 的值是 k;④ 其中判斷正確的是 ( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶承包荒山種植某產(chǎn)品種蜜柚已知該蜜柚的成本價為8千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷量千克與銷售單價千克之間的函數(shù)關(guān)系如圖所示.

yx的函數(shù)關(guān)系式,并寫出x的取值范圍;

當(dāng)該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線y=2x+2與x軸,y軸分別交于A,B兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M(a,4).

(1)求反比例函數(shù)y=(x>0)的表達(dá)式;

(2)若點(diǎn)C在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)D在x軸上,當(dāng)四邊形ABCD是平行四邊形時,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過某十字路口的汽車,可能直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,求三輛汽車經(jīng)過這個十字路口時,下列事件的概率.

(1)三輛車全部繼續(xù)直行;

(2)兩輛車向右轉(zhuǎn),一輛車向左轉(zhuǎn);

(3)至少有兩輛車向左轉(zhuǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行漢字聽寫比賽,每位學(xué)生聽寫漢字39個,比賽結(jié)束后隨機(jī)抽查部分學(xué)生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計(jì)圖的一部分.

根據(jù)以上信息解決下列問題:

在統(tǒng)計(jì)表中,____________,并補(bǔ)全條形統(tǒng)計(jì)圖.

扇形統(tǒng)計(jì)圖中“C所對應(yīng)的圓心角的度數(shù)是______

若該校共有1120名學(xué)生,如果聽寫正確的個數(shù)少于24個定為不合格,請你估計(jì)這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+3xx軸交于O、A兩點(diǎn),與直線yx交于O、B兩點(diǎn),點(diǎn)A、B的坐標(biāo)分別為(30)、(22).點(diǎn)P在拋物線上,且不與點(diǎn)O、B重合,過點(diǎn)Py軸的平行線交射線OB于點(diǎn)Q,以PQ為邊作RPQN,點(diǎn)N與點(diǎn)B始終在PQ同側(cè),且PN1.設(shè)點(diǎn)P的橫坐標(biāo)為mm0),PQ長度為d

1)用含m的代數(shù)式表示點(diǎn)P的坐標(biāo).

2)求dm之間的函數(shù)關(guān)系式.

3)當(dāng)△PQN是等腰直角三角形時,求m的值.

4)直接寫出△PQN的邊與拋物線有兩個交點(diǎn)時m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△ACD,連接AD,BC.若∠ACB=30°AB=1,CC=x,則下列結(jié)論:①△AAD≌△CCB;②當(dāng)x=1時,四邊形ABCD是菱形;③當(dāng)x=2時,△BDD為等邊三角形.其中正確的是_______(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于C2,n)、D兩點(diǎn),與x軸,y軸分別交于A、B0,2)兩點(diǎn),如果△AOC的面積為6.

1)求點(diǎn)A的坐標(biāo)

2)求一次函數(shù)和反比例函數(shù)的解析式;

3)如圖2,連接DO并延長交反比例函數(shù)的圖象于點(diǎn)E,連接CE,求點(diǎn)E的坐標(biāo)和△COE的面積。

查看答案和解析>>

同步練習(xí)冊答案