【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B.
(1)求證:∠DFA=∠ECD;
(2)△ADF與△DEC相似嗎?為什么?
(3)若AB=4,AD=3,AE=3,求AF的長.
【答案】(1)詳見解析;(2)△ADF∽△DEC,理由詳見解析;(3)AF=2.
【解析】
(1)因為∠AFE=∠B,平行四邊形的鄰角互補可得:∠B+∠ECD=180°;,等角的補角相等,所以∠AFE的領(lǐng)補角∠DFA=∠ECD;
(2)根據(jù)兩角對應相等的兩個三角形相似證明;
(3) 由平行四邊形ABCD中,過點A作AE⊥BC,AB=4,AD=3,AE=3,由勾股定理可求得DE的長,又由∠AFE=∠B,易證得△ADF∽△DEC,然后由相似三角形的對應邊成比例,即可求得答案.
(1)證明:∵∠AFE∠DFA=180°,又∵四邊形ABCD為平行四邊形,∴∠B+∠ECD=180°,又∵∠B=∠AFE,∴∠DFA=∠ECD.
(2)解:△ADF∽△DEC.∵四邊形ABCD是平行四邊形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°,∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC.
(3)解:∵四邊形ABCD是平行四邊形,∴AD∥BC,CD=AB=4,又∵AE⊥BC,∴AE⊥AD,在Rt△ADE中,DE= ==6 ,∵△ADF∽△DEC,∴= ,∴=,AF=2 .
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料,解答問題.
例:用圖象法解一元二次不等式:
解:設,則是的二次函數(shù).∵,
∴拋物線開口向上.
又∵當時,,解得,.
∴由此得拋物線的大致圖象如圖所示.
觀察函數(shù)圖象可知:當或時,.
∴的解集是:或.
(1)觀察圖象,直接寫出一元二次不等式:的解集是______;
(2)仿照材料、用圖象法解一元二次不等式:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣2,2),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B'在此反比例函數(shù)的圖象上,則t的值是( 。
A. 1+B. 4+C. 4D. -1+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年4月23日是第二十四個“世界讀書日“.某校組織讀書征文比賽活動,評選出一、二、三等獎若干名,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據(jù)圖中信息解答下列問題:
(1)求本次比賽獲獎的總?cè)藬?shù),并補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中“二等獎”所對應扇形的圓心角度數(shù);
(3)學校從甲、乙、丙、丁4位一等獎獲得者中隨機抽取2人參加“世界讀書日”宣傳活動,請用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】聊城流傳著一首家喻戶曉的民謠:“東昌府,有三寶,鐵塔、古樓、玉皇皋.”被人們譽為三寶之一的鐵塔,初建年代在北宋早期,是本市現(xiàn)存最古老的建筑.如圖,測繪師在離鐵塔10米處的點C測得塔頂A的仰角為α,他又在離鐵塔25米處的點D測得塔頂A的仰角為β,若tanαtanβ=1,點D,C,B在同一條直線上,那么測繪師測得鐵塔的高度約為(參考數(shù)據(jù): ≈3.162)( )
A. 15.81米 B. 16.81米 C. 30.62米 D. 31.62米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等邊的邊在軸正半軸上,點,,點、分別從、出發(fā)以相同的速度向、運動,連接、交于點,是軸上一點,則的最小值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AD=4,E在AB上且AB=4BE,連接CE,作BF⊥CE于F,正方形對角線交于O點,連接OF,將△COF沿CE翻折得△CGF,連接BG,則BG的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(﹣3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過B點,且頂點在直線y=上.
(1)求拋物線對應的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由.
(3)在(2)的條件下,若M點是CD所在直線下方該拋物線上的一個動點,過點M作MN平行于y軸交CD于點N.設點M的橫坐標為t,MN的長度為s,求s與t之間的函數(shù)關(guān)系式,寫出自變量t的取值范圍,并求s取大值時,點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com