定義:直線a與直線b相交于點(diǎn)O,對(duì)于平面內(nèi)任意一點(diǎn)M,點(diǎn)M到直線a與直線b的距離分別為p、q,則稱有序?qū)崝?shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.根據(jù)上述定義,“距離坐標(biāo)”是(1,2)的點(diǎn)的個(gè)數(shù)是

A. 1 B. 2 C. 3 D. 4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年四川省成都市金堂縣八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷就(解析版) 題型:填空題

在平面直角坐標(biāo)系中,已知一次函數(shù)y=的圖象經(jīng)過(guò)P1(x1,y1)、P2(x2,y2)兩點(diǎn),若x1>x2,則y1  y2(填“>”或“<”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西省下期九年級(jí)第一次月考數(shù)學(xué)試卷(解析版) 題型:判斷題

某學(xué)校為了解本校2400名學(xué)生對(duì)某次足球賽的關(guān)注程度,以利于做好教育和引導(dǎo)工作,隨機(jī)抽取了本校內(nèi)的六、七、八、九四個(gè)年級(jí)部分學(xué)生進(jìn)行調(diào)查,按“各年級(jí)被抽取人數(shù)”與“關(guān)注程度”,分別繪制了條形統(tǒng)計(jì)圖(圖①)、扇形統(tǒng)計(jì)圖(圖②)和折線統(tǒng)計(jì)圖(圖③).

(1)本次共隨機(jī)抽查了________名學(xué)生,根據(jù)信息補(bǔ)全圖①中條形統(tǒng)計(jì)圖,圖②中八年級(jí)所對(duì)應(yīng)扇形的圓心角的度數(shù)為_(kāi)_______;

(2)如果把“特別關(guān)注”“一般關(guān)注”“偶爾關(guān)注”都看成關(guān)注,那么全校關(guān)注足球賽的學(xué)生大約有多少名?

(3)①根據(jù)上面的統(tǒng)計(jì)結(jié)果,談?wù)勀銓?duì)該校學(xué)生對(duì)足球關(guān)注的現(xiàn)狀的看法及建議;

②如果要了解中小學(xué)生對(duì)校園足球的關(guān)注情況,你認(rèn)為應(yīng)該如何進(jìn)行抽樣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西省下期九年級(jí)第一次月考數(shù)學(xué)試卷(解析版) 題型:單選題

下列各實(shí)數(shù)中,最小的是(  )

A. B. C. D. |-2|

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江蘇省東臺(tái)市第六教育聯(lián)盟七年級(jí)下學(xué)期第一次月考數(shù)學(xué)試卷 題型:填空題

一個(gè)多邊形每個(gè)內(nèi)角都為108°,這個(gè)多邊形是 邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江蘇省東臺(tái)市第六教育聯(lián)盟七年級(jí)下學(xué)期第一次月考數(shù)學(xué)試卷 題型:單選題

下面有3句話:①同旁內(nèi)角互補(bǔ);②兩直線平行,內(nèi)錯(cuò)角相等;③在同一平面內(nèi),垂直于同一條直線的兩直線互相平行.其中正確的為 ( )

A. ① B. ② C. ③ D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年廣東省七年級(jí)下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年廣東省七年級(jí)下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:單選題

計(jì)算的結(jié)果是( )

A. B. - C. D. -

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.計(jì)算:
(1)(3$\sqrt{2}$-$\sqrt{5}$)(-3$\sqrt{2}$-$\sqrt{5}$);
(2)$\sqrt{\frac{{x}^{2}}{y}}$+$\sqrt{xy}$×$\sqrt{\frac{x}{{y}^{2}}}$÷$\sqrt{\frac{x}{y}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案