(11·孝感)已知正方形ABCD,以CD為邊作等邊△CDE,則∠AED的度數(shù)是__________.
15°或75°
由圖1和圖2根據(jù)正方形的性質和等邊三角形的性質就可以求出△ADE是等腰三角形,再由等邊三角形的性質就可以求出結論.
解:如圖1,當△CDE在正方形外部時,
∵四邊形ABCD是正方形,
∴AD=DC,∠ADC=90°,
∵△CDE是等邊三角形,
∴CD=DE,∠CDE=60°
∴AD=DE,∠ADE=150°,
∴∠DAE=∠DEA.
∵∠DEA+∠DAE+∠ADE=180°,
∴∠AED=15°.
如圖2,當△CED在正方形內(nèi)部時,
∵四邊形ABCD是正方形,
∴AD=DC,∠ADC=90°,
∵△CDE是等邊三角形,
∴CD=DE,∠CDE=60°
∴AD=DE,∠ADE=30°,
∴∠DAE=∠DEA.,
∵∠DEA+∠DAE+∠ADE=180°,
∴∠AED=75°.
本題考查了正方形的性質的運用,等腰三角形的性質的運用,等邊三角形的性質的運用.解答時求出AD=DE是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在矩形ABCD中,AB<AD,點E在AD上,且CA平分∠BCE.若矩形
ABCD的周長為10,則△CDE的周長為        

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2011•陜西)如圖,在梯形ABCD中,AD∥BC,對角線AC⊥BD,若AD=3,BC=7,則梯形ABCD面積的最大值  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(11·曲靖)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,
則四邊形DBFE的周長為_______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(2011山東濟南,11,3分)如圖,在等腰梯形ABCD中,AD∥BC,對角線AC、BD相交于點O,下列結論不一定正確的是( )

A.AC="BD          "   B.∠OBC=∠OCB
C.S△AOB=S△DOC                 D.∠BCD=∠BDC

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·大連)(本題9分)如圖6,等腰梯形ABCD中,AD∥BC,M是BC的中點,求證:∠DAM=∠ADM.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列命題:①坐標平面內(nèi),點(a,b)與點(b,a)表示同一個點;②要了解一批電視機的使用壽命,從中任意抽取40臺電視機進行試驗,在這個問題中,樣本容量是40臺電視機;③過一點有且只有一條直線與這條直線平行;④如果a<b,那么a c < b c;其中真命題有(    )
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·佛山)閱讀材料
我們經(jīng)常通過認識一個事物的局部或其特殊類型,來逐步認識這個事物;
比如我們通過學習兩類特殊的四邊形,即平行四邊形和梯形(繼續(xù)學習它們的特殊類型如矩形、等腰梯形等)來逐步認識四邊形;
我們對課本里特殊四邊形的學習,一般先學習圖形的定義,再探索發(fā)現(xiàn)其性質和判定方法,然后通過解決簡單的問題鞏固所學知識;
請解決以下問題:
如圖,我們把滿足AB=CD、CB=CD且AB≠BC的四邊形ABCD叫做“箏形”;
(1)寫出箏形的兩個性質(定義除外);
(2)寫出箏形的兩個判定方法(定義除外),并選出一個進行證明;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011湖南衡陽,26,10分)如圖,在矩形ABCD中,AD=4,AB=m(m>4),點PAB邊上的任意一點(不與A、B重合),連結PD,過點PPQPD,交直線BC于點Q
(1)當m=10時,是否存在點P使得點Q與點C重合?若存在,求出此時AP的長;若不存在,說明理由;
(2)連結AC,若PQAC,求線段BQ的長(用含m的代數(shù)式表示)
(3)若△PQD為等腰三角形,求以P、Q、C、D為頂點的四邊形的面積Sm之間的函數(shù)關系式,并寫出m的取值范圍.

查看答案和解析>>

同步練習冊答案