【題目】若多邊形的每一個內(nèi)角均為135°,則這個多邊形的邊數(shù)為

【答案】8
【解析】解:∵所有內(nèi)角都是135°,
∴每一個外角的度數(shù)是180°﹣135°=45°,
∵多邊形的外角和為360°,
∴360°÷45°=8,
即這個多邊形是八邊形.
所以答案是:8.
【考點精析】利用多邊形內(nèi)角與外角對題目進(jìn)行判斷即可得到答案,需要熟知多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=ACB,AD、BD、CD分別平分ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①ADBC;②∠ACB=2ADB;③∠ADC+ABD=90°;④∠BDC=BAC.其中正確的結(jié)論有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于點Px,y)和Qxy′),給出如下定義:

,則稱點Q為點P的“可控變點”.

例如:點(1,2)的“可控變點”為點(1,2),點(﹣1,3)的“可控變點”為點(﹣1,﹣3).

(1)點(﹣5,﹣2)的“可控變點”坐標(biāo)為  

(2)若點P在函數(shù)的圖象上,其“可控變點”Q的縱坐標(biāo)y′是7,求“可控變點”Q的橫坐標(biāo);

(3)若點P在函數(shù))的圖象上,其“可控變點”Q的縱坐標(biāo)y′ 的取值范圍是,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓的直徑,O為圓心,C為圓弧上一點,AD垂直于過點C的切線,垂足為點D,AB的延長線交切線CD于點E

(1)求證:AC平分∠DAB;

(2)若AB =4,BOE的中點,CFAB,垂足為點F,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進(jìn)價格為3/個的某品牌粽子,根據(jù)市場預(yù)測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個,為了維護(hù)消費者利益,物價部門規(guī)定,該品牌粽子售價不能超過進(jìn)價的200%,請你利用所學(xué)知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,點C在O上,CAB的平分線交O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.

(1)猜想ED與O的位置關(guān)系,并證明你的猜想;

(2)若AB=6,AD=5,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OAOBABx軸于點C,點A,1)在反比例函數(shù)的圖象上.

1)求反比例函數(shù)的表達(dá)式;

2)在x軸的負(fù)半軸上存在一點P,使得SAOP=SAOB,求點P的坐標(biāo);

3)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點E的坐標(biāo),并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個三角形的兩邊長分別為3和7,則第三邊長可能是( 。
A.6
B.3
C.2
D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,tan∠ABC=,∠ACB=45°,AD=8,AD是邊BC上的高,垂足為D,BE=4,點M從點B出發(fā)沿BC方向 以每秒3個單位的速度運動,點N從點E出發(fā),與點M同時同方向以每秒1個單位的速度運動.以MN為邊在BC的上方作正方形MNGH.點M到達(dá)點C時停止運動,點N也隨之停止運動.設(shè)運動時間為t(秒)(t>0) .

(1)當(dāng)t為 時,點H剛好落在線段AB上;當(dāng)t為 時,點H剛好落在線段AC上;

(2)設(shè)正方形MNGH與Rt△ABC重疊部分的圖形的面積為S,求出S 關(guān)于t的函數(shù)關(guān)系式并寫出自變量t的取值范圍;

(3)設(shè)正方形MNGH的邊NG所在直線與線段AC交于點P,連結(jié)PM,直接寫出當(dāng)t為何值時,△PMN的外接圓與AD相切.

查看答案和解析>>

同步練習(xí)冊答案