【題目】如圖1,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,點(diǎn)D,E,N分別是△ABC的AB,AC,BC邊上的中點(diǎn),連接AN,DE交于點(diǎn)M.
(1)觀(guān)察猜想:的值為 :的值為 ;
(2)探究與證明:將△ADE繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<360°),且△ADE內(nèi)部的線(xiàn)段AM隨之旋轉(zhuǎn),如圖2所示,連接BD,CE,MN,試探究線(xiàn)段BD與CE和BD與MN之間分別有什么樣的數(shù)量關(guān)系,并證明;
(3)拓展與延伸:△ADE在旋轉(zhuǎn)的過(guò)程中,設(shè)直線(xiàn)CE與BD相交于點(diǎn)F,當(dāng)∠CAE=90°時(shí),BF= .
【答案】(1),;(2),,見(jiàn)解析;(3)或.
【解析】
(1)由三角形中位線(xiàn)定理可得AD=BD=3,AE=EC=4,DE∥BC,由勾股定理可求BC=10,由直角三角形的性質(zhì)可得AN=5,由平行線(xiàn)分線(xiàn)段成比例可得,即可求解;
(2)由旋轉(zhuǎn)的性質(zhì)可證△ADB∽△AEC,△ABD∽△ANM,由相似三角形的性質(zhì)可求解;
(3)分當(dāng)點(diǎn)E在線(xiàn)段AB上和點(diǎn)E在線(xiàn)段BA的延長(zhǎng)線(xiàn)上在兩種情況討論,由勾股定理可求BD,CE的長(zhǎng),由相似三角形的性質(zhì)可求BF的長(zhǎng).
(1)∵AB=6,AC=8,點(diǎn)D,E分別是△ABC的AB,AC邊上的中點(diǎn),∴AD=BD=3,AE=EC=4,DE∥BC,∴.
∵∠BAC=90°,AB=6,AC=8,∴BC10.
∵點(diǎn)N是BC上的中點(diǎn),∴ANBC=5.
∵DE∥BC,∴,∴.
故答案為:,;
(2),.理由如下:
由圖1可得:∵DE∥BC,∴△ADE∽△ABC,△ADM∽△ABM,∴,.
∵將△ADE繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)α角,∴∠DAB=∠CAE=α,且,∴△ADB∽△AEC,∴.
∵∠BAD=∠MAN=α,且,∴△ABD∽△ANM,∴.
(3)如圖,當(dāng)點(diǎn)E在線(xiàn)段AB上時(shí).
∵AB=6,AC=8,AE=4,AD=3,∴CD=11,BD3,CE4.
∵,∴,且∠DAE=∠EAC=90°,∴△AEC∽△ADB,∴∠ABD=∠ACE,且∠ABD+∠BDA=90°,∴∠ACE+∠BDA=90°,∴∠DFC=90°=∠BAC,且∠ACE=∠ACE,∴△ACE∽△FCD,∴,∴DF,∴BF=BD﹣DF.
如圖,當(dāng)點(diǎn)E在線(xiàn)段BA的延長(zhǎng)線(xiàn)上.
同理可得:BD=3,BE=10,∠BAC=∠EFB=90°.
∵∠EBF=∠EBF,∠BAD=∠EFB=90°,∴△ADB∽△FEB,∴,∴BF4.
綜上所述:當(dāng)∠CAE=90°時(shí),BF=4或.
故答案為:4或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E在BC上,連接BD,DE,∠CDE=∠ABD.
(1)求證:DE是⊙O的切線(xiàn).
(2)如圖②,當(dāng)∠ABC=90°時(shí),線(xiàn)段DE與BC有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
(3)如圖③,若AB=AC=10,sin∠CDE=,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為( )
A. 4 B. 3 C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)和.
求一次函數(shù)和反比例函數(shù)的表達(dá)式;
請(qǐng)直接寫(xiě)出時(shí),x的取值范圍;
過(guò)點(diǎn)B作軸,于點(diǎn)D,點(diǎn)C是直線(xiàn)BE上一點(diǎn),若,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近日,全省各地市的2019年初中畢業(yè)升學(xué)體育考試工作正依照某省教育廳的具體要求在有條不紊的進(jìn)行當(dāng)中,某中學(xué)在正式考試前,為了讓同學(xué)們?cè)谥姓畜w育考試中獲得理想成績(jī),同時(shí)為了了解學(xué)生的當(dāng)前水平,按批次進(jìn)行了模擬考試,并隨機(jī)抽取若干名學(xué)生問(wèn)卷調(diào)查,現(xiàn)將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖表:
組別 | 成績(jī)范圍x(分) | 頻數(shù)(人數(shù)) |
A | 60<x≤70 | 54 |
B | 50<x≤60 | m |
C | 40<x≤50 | n |
D | 30<x≤40 | 6 |
(1)這次調(diào)查的總?cè)藬?shù)有 人,表中的m= ,n= ;
(2)扇形統(tǒng)計(jì)圖中B組對(duì)應(yīng)的圓心角為 °;
(3)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(4)若該校九年級(jí)共有學(xué)生2700名,且都參加了正式的初中畢業(yè)升學(xué)體育考試,小華也參加了這次考試并得了67分,若規(guī)定60分以上為優(yōu)秀,體育老師想要在獲得優(yōu)秀的學(xué)生中隨機(jī)抽出1名,作為學(xué)生代表向?qū)W弟學(xué)妹們傳授經(jīng)驗(yàn),求抽到小華的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)與軸交于點(diǎn)與軸交于點(diǎn)二次函數(shù)的圖象經(jīng)過(guò)兩點(diǎn),且與軸的負(fù)半軸交于點(diǎn).
求二次函數(shù)的解析式及點(diǎn)的坐標(biāo).
點(diǎn)是線(xiàn)段上的一動(dòng)點(diǎn),動(dòng)點(diǎn)在直線(xiàn)下方的二次函數(shù)圖象上.設(shè)點(diǎn)的橫坐標(biāo)為.過(guò)點(diǎn)作于點(diǎn)求線(xiàn)段的長(zhǎng)關(guān)于的函數(shù)解析式,并求線(xiàn)段的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、B是⊙O上兩點(diǎn),△OAB外角的平分線(xiàn)交⊙O于另一點(diǎn)C,CD⊥AB交AB的延長(zhǎng)線(xiàn)于D.
(1)求證:CD是⊙O的切線(xiàn);
(2)E為的中點(diǎn),F為⊙O上一點(diǎn),EF交AB于G,若tan∠AFE=,BE=BG,EG=3,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為_______°;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí) 達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=kx﹣4k+4與拋物線(xiàn)y=x2﹣x交于A、B兩點(diǎn).
(1)直線(xiàn)總經(jīng)過(guò)定點(diǎn),請(qǐng)直接寫(xiě)出該定點(diǎn)的坐標(biāo);
(2)點(diǎn)P在拋物線(xiàn)上,當(dāng)k=﹣時(shí),解決下列問(wèn)題:
①在直線(xiàn)AB下方的拋物線(xiàn)上求點(diǎn)P,使得△PAB的面積等于20;
②連接OA,OB,OP,作PC⊥x軸于點(diǎn)C,若△POC和△ABO相似,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com