【題目】如圖,在四邊形中,,,,,點是邊上一點,過點分別作與的垂線,過點作的垂線,得到矩形和矩形,則這兩個矩形的面積之和的最大值是_________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC 中,點 D 為邊 BC 的點,點 E、F 分別是邊 AB、AC 上兩點,且 EF∥BC,若 AE:EB=m,BD:DC=n,則( )
A.若 m>1,n>1,則 2S△AEF>S△ABDB.若 m>1,n<1,則 2S△AEF<S△ABD
C.若 m<1,n<1,則 2S△AEF<S△ABDD.若 m<1,n>1,則 2S△AEF<S△ABD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學對本校初2017屆500名學生中中考參加體育加試測試情況進行調(diào)查,根據(jù)男生1000米及女生800米測試成績整理,繪制成不完整的統(tǒng)計圖,(圖①,圖②),請根據(jù)統(tǒng)計圖提供的信息,回答下列問題:
(1)該校畢業(yè)生中男生有 人;扇形統(tǒng)計圖中a= ;
(2)補全條形統(tǒng)計圖;
(3)若500名學生中隨機抽取一名學生,這名學生該項成績在8分及8分以下的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自2017年3月起,成都市中心城區(qū)居民用水實行以戶為單位的三級階梯收費辦法:
第I級:居民每戶每月用水18噸以內(nèi)含18噸每噸收水費a元;
第Ⅱ級:居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第Ⅰ級標準收費,超過部分每噸收水費b元;
第Ⅲ級:居民每戶每月用水超過25噸,未超過25噸的部分按照第I、Ⅱ級標準收費,超過部分每噸收水費c元.
設一戶居民月用水x噸,應繳水費為y元,y與x之間的函數(shù)關系如圖所示
(1)根據(jù)圖象直接作答:a= ,b= ;
(2)求當x≥25時y與x之間的函數(shù)關系;
(3)把上述水費階梯收費辦法稱為方案①,假設還存在方案②:居民每戶月用水一律按照每噸4元的標準繳費,請你根據(jù)居民每戶月“用水量的大小設計出對居民繳費最實惠的方案.(寫出過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=x﹣2與雙曲線y=(k≠0)相交于A,B兩點,且點A的橫坐標是3.
(1)求k的值;
(2)過點P(0,n)作直線,使直線與x軸平行,直線與直線y=x﹣2交于點M,與雙曲線y= (k≠0)交于點N,若點M在N右邊,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的外接圓,且,延長至點,使得,點是上的一個動點,連結(jié),,.
(1)當時,求證:;
(2)若,則:
①求的半徑;
②當為直角三角形時,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(思考題)
閱讀下面的情景對話,然后解答問題:
老師:我們新定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
小華:等邊三角形一定是奇異三角形;
小明:那直角三角形是否存在奇異三角形呢?
(1)①根據(jù)“奇異三角形”的定義,小紅得出命題:“等邊三角形一定是奇異三角形”,請判斷小紅提出的命題是否正確,并填空:命題 (填“正確”或“不正確”),不要說嘛理由.
②若某三角形的三邊長分別是2、4、,則△ABC是奇異三角形嗎? (填“是”或“不是”),不要說嘛理由.
(2)在Rt△ABC中,兩邊長分別是a=5、c=10,這個三角形是否是奇異三角形?請說明理由.
(3)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究:
(1)如圖①所示是一個半徑為,高為4的圓柱體和它的側(cè)面展開圖,AB是圓柱的一條母線,一只螞蟻從A點出發(fā)沿圓柱的側(cè)面爬行一周到達B點,求螞蟻爬行的最短路程.(探究思路:將圓柱的側(cè)面沿母線AB剪開,它的側(cè)面展開圖如圖①中的矩形則螞蟻爬行的最短路程即為線段的長)
(2)如圖②所示是一個底面半徑為,母線長為4的圓錐和它的側(cè)面展開圖,PA是它的一條母線,一只螞蟻從A點出發(fā)沿圓錐的側(cè)面爬行一周后回到A點,求螞蟻爬行的最短路程.
(3)如圖③所示,在②的條件下,一只螞蟻從A點出發(fā)沿圓錐的側(cè)面爬行一周到達母線PA上的一點,求螞蟻爬行的最短路程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△OAC中,∠OCA=90°,O為坐標原點,直角頂點C在x軸的正半軸上,反比例函數(shù)y=(k>0)在第一象限的圖象經(jīng)過OA的中點B,交AC于點D,連接OD.若∠A=∠COD,則直線OA的解析式為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com