【題目】由于數(shù)學(xué)課上需要用到科學(xué)計(jì)算器,班級決定集體購買,班長小明先去文具店購買了2個A型計(jì)算器和3個B型計(jì)算器,共花費(fèi)90元;后又買了1個A型計(jì)算器和2個B型計(jì)算器,共花費(fèi)55元(每次兩種計(jì)算器的售價都不變)
(1)求A型計(jì)算器和B型計(jì)算器的售價分別是每個多少元?
(2)經(jīng)統(tǒng)計(jì),班內(nèi)還需購買兩種計(jì)算器共40個,設(shè)購買A型計(jì)算器t個,所需總費(fèi)用w元,請求出w關(guān)于t的函數(shù)關(guān)系式;
(3)要求:B型計(jì)算器的數(shù)量不少于A型計(jì)數(shù)器的2倍,請?jiān)O(shè)計(jì)一種購買方案,使所需總費(fèi)用最低.
【答案】(1)A型計(jì)算器售價為每個15元,B型計(jì)算器售價為每個20元(2)W=-5t+800(3)購買A型計(jì)算器13個,B型計(jì)算器27個時,費(fèi)用最低,最低費(fèi)用為735元
【解析】試題分析:(1)設(shè)A型計(jì)算器的售價為每個x元,B型計(jì)算器的售價為每個y元,根據(jù)“購買了2個A型計(jì)算器和3個B型計(jì)算器,共花費(fèi)90元,后又買了1個A型計(jì)算器和2個
B型計(jì)算器,共花費(fèi)55元”,即可得到關(guān)于x、y的二元一次方程組,解之即可;
(2)設(shè)購買A型計(jì)算器t個,所需總費(fèi)用w元,則買B型計(jì)算器(40-t)個,根據(jù)總價=單價×購買數(shù)量,即可得到w關(guān)于t的函數(shù)解析式;
(3)由B型計(jì)算器的數(shù)量不少于A型計(jì)數(shù)器的2倍,即可得出關(guān)于t的一元一次不等式,解之解可求出t的取值范圍,再利用一次函數(shù)的性質(zhì)可解決最值問題.
試題解析:(1)設(shè)A型計(jì)算機(jī),售價為每個x元,b型計(jì)算機(jī)售價為每個為y元,根據(jù)
題意得: ,解得
答:A型計(jì)算器售價為每個15元,B型計(jì)算器售價為每個20元
設(shè)購買A型計(jì)算機(jī)t個,所需總費(fèi)用w元,則購買B型計(jì)算機(jī)(40-t)個
W=15t+20(40-t)=-5t+800
∵40-t≥2t,∴t≤
W=-5t+800,∵-5<0,∴隨t的增大而減小
∴t為整數(shù),當(dāng)t=13時,wmin=-5x13+800=735元
答:購買A型計(jì)算器13個,B型計(jì)算器27個時,費(fèi)用最低,最低費(fèi)用為735元
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備投資開發(fā)A、B兩種新產(chǎn)品,信息部通過調(diào)研得到兩條信息:
信息一:如果投資A種產(chǎn)品,所獲利潤(萬元)與投資金額x(萬元)之間滿足正比例函數(shù)關(guān)系: ;
信息二:如果投資B種產(chǎn)品,所獲利潤(萬元)與投資金額x(萬元)之間滿足二次函數(shù)關(guān)系: ;
根據(jù)公司信息部報(bào)告, 、(萬元)與投資金額x(萬元)的部分對應(yīng)值如下表所示:
(1)填空: = ; = ;
(2)如果公司準(zhǔn)備投資20萬元同時開發(fā)A、B兩種新產(chǎn)品,設(shè)公司所獲得的總利潤為W(萬元),B種產(chǎn)品的投資金額為x(萬元),則A種產(chǎn)品的投資金額為_________萬元,并求出W與x之間的函數(shù)關(guān)系式;
(3)請你設(shè)計(jì)一個在(2)中公司能獲得最大總利潤的投資方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計(jì)2015年寧波市實(shí)現(xiàn)地區(qū)生產(chǎn)總值8011.5億元,按可比價格計(jì)算,比上年增長了8%,把8011.5億用科學(xué)記數(shù)法表示是( )
A.8011.5×108
B.801.15×109
C.8.0115×1010
D.8.0115×1011
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某細(xì)胞的直徑為0.00000015米,這個數(shù)用科學(xué)記數(shù)法表示為___________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=5,AB=8,點(diǎn)E為射線DC上一個動點(diǎn),把△ADE沿直線AE折疊,當(dāng)點(diǎn)D的對應(yīng)點(diǎn)F剛好落在線段AB的垂直平分線上時,則DE的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(3,﹣2)關(guān)于y軸的對稱點(diǎn)是 , 關(guān)于原點(diǎn)的對稱點(diǎn)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寧波軌道交通3號線于2014年12月23日開工建設(shè),預(yù)計(jì)2020年全線開通,3號線全長32.83千米,32.83千米用科學(xué)記數(shù)法表示為( )
A.3.283×104米
B.32.83×104米
C.3.283×105米
D.3.283×103米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索與研究:
方法1:如圖(a),對任意的符合條件的直角三角形繞其銳角頂點(diǎn)旋轉(zhuǎn)90°所得,所以
∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖示寫出證明勾股定理的過程;
方法2:如圖(b),是任意的符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫一種證明勾股定理的方法嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點(diǎn)B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點(diǎn)B的落點(diǎn)依次為B1,B2,B3,…,則B2017的坐標(biāo)為( 。
A. (1345,0) B. (1345.5,) C. (1345,) D. (1345.5,0)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com