【題目】自2017年3月起,成都市中心城區(qū)居民用水實行以戶為單位的三級階梯收費辦法:
第I級:居民每戶每月用水18噸以內含18噸每噸收水費a元;
第Ⅱ級:居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第Ⅰ級標準收費,超過部分每噸收水費b元;
第Ⅲ級:居民每戶每月用水超過25噸,未超過25噸的部分按照第I、Ⅱ級標準收費,超過部分每噸收水費c元.
設一戶居民月用水x噸,應繳水費為y元,y與x之間的函數關系如圖所示
(1)根據圖象直接作答:a= ,b= ;
(2)求當x≥25時y與x之間的函數關系;
(3)把上述水費階梯收費辦法稱為方案①,假設還存在方案②:居民每戶月用水一律按照每噸4元的標準繳費,請你根據居民每戶月“用水量的大小設計出對居民繳費最實惠的方案.(寫出過程)
【答案】(1)3;4;(2)當x≥25時,y與x之間的函數關系式為y=6x﹣68;(3)當x<34時,選擇繳費方案①更實惠;當x=34時,選擇兩種繳費方案費用相同;當x>34時,選擇繳費方案②更實惠
【解析】
(1)根據單價=總價÷數量可求出a,b的值,此問得解;
(2)觀察函數圖象,找出點的坐標,利用待定系數法即可求出當x≥25時y與x之間的函數關系;
(3)由總價=單價×數量可找出選擇繳費方案②需交水費y(元)與用水數量x(噸)之間的函數關系式,分別找出當6x﹣68<4x,6x﹣68=4x,6x﹣68>4x時x的取值范圍(x的值),選擇費用低的方案即可得出結論.
(1)a=54÷18=3,
b=(82﹣54)÷(25﹣18)=4.
故答案為:3;4.
(2)設當x≥25時,y與x之間的函數關系式為y=mx+n(m≠0),
將(25,82),(35,142)代入y=mx+n,得:,
解得:,
∴當x≥25時,y與x之間的函數關系式為y=6x﹣68.
(3)根據題意得:選擇繳費方案②需交水費y(元)與用水數量x(噸)之間的函數關系式為y=4x.
當6x﹣68<4x時,x<34;
當6x﹣68=4x時,x=34;
當6x﹣68>4x時,x>34.
∴當x<34時,選擇繳費方案①更實惠;當x=34時,選擇兩種繳費方案費用相同;當x>34時,選擇繳費方案②更實惠.
科目:初中數學 來源: 題型:
【題目】(1)已知兩點A(3,m),B(2m,4),且A和B到x軸距離相等,求B點坐標.
(2)點A在第四象限,當m為何值時,點A(m+2,3m5)到x軸的距離是它到y軸距離的一半.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數表達式y(tǒng)=a(x﹣4)2+h,已知點O與球網的水平距離為5m,球網的高度為1.55m.
(1)當a=﹣ 時,①求h的值;②通過計算判斷此球能否過網.
(2)若甲發(fā)球過網后,羽毛球飛行到與點O的水平距離為7m,離地面的高度為 m的Q處時,乙扣球成功,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點C是AB上一點,△ACM、△CBN都是等邊三角形.
(1)說明AN=MB;
(2)將△ACM繞點C按逆時針旋轉180°,使A點落在CB上,請對照原題圖畫出符合要求的圖形;
(3)在(2)所得到的圖形中,結論“AN=BM”是否成立?若成立,請說明理由;若不成立,也請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,且AD>BC,BC=6 cm,動點P,Q分別從A,C同時出發(fā),P以1 cm/s的速度由A向D運動,Q以2cm/s的速度由C向B運動(Q運動到B時兩點同時停止運動),則________后四邊形ABQP為平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,AB=24cm,DC=10cm,點P和Q同時從D、B出發(fā),P由D向C運動,速度為每秒1cm,點Q由B向A運動,速度為每秒3cm,試求幾秒后,P、Q和梯形ABCD的兩個頂點所形成的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且速度都為1cm/s,連接AQ、CP交于點M,下面四個結論:①△ABQ≌△CAP;;②∠CMQ的度數不變,始終等于60°③BP=CM;正確的有幾個( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道:點A、B在數軸上分別表示有理數a、b,如圖A、B兩點之間的距離表示為AB,記作AB=|a﹣b|.回答下列問題:
(1)數軸上表示2和5兩點之間的距離是 ,數軸上表示1和﹣3的兩點之間的距離是 ;
(2)已知|a﹣3|=7,則有理數a= ;
(3)若數軸上表示數b的點位于﹣4與3的兩點之間,則|b﹣3|+|b+4|= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,以Rt△ABC的斜邊BC為一邊在△ABC的同側作正方形BCEF,設正方形的中心為O,連接AO,如果AB=4,AO=6 ,那么AC= .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com