【題目】如圖,求的度數.
【答案】540°.
【解析】
首先根據三角形的外角的性質,可得∠10=∠1+∠9,∠11=∠1+∠8,所以∠10+∠11=∠1+∠9+∠1+∠8=180°+∠1;然后求出(∠2+∠3+∠4+∠11)+(∠5+∠6+∠7+∠10)的度數,再用所得的結果減去180°,求出∠1+∠2+∠3+∠4+∠5+∠6+∠7的度數是多少即可.
解:如圖1,
,
∵∠10=∠1+∠9,∠11=∠1+∠8,
∴∠10+∠11=∠1+∠9+∠1+∠8=180°+∠1,
∴(∠2+∠3+∠4+∠11)+(∠5+∠6+∠7+∠10)
=360°+360°
=720°
∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=720°-180°=540°,
即∠1+∠2+∠3+∠4+∠5+∠6+∠7的度數是540°.
故答案為:540°.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC為銳角,點D為直線BC上一動點,以AD為直角邊且在AD的右側作等腰直角三角形ADE,∠DAE=90°,AD=AE.
(1)如果AB=AC,∠BAC=90°.①當點D在線段BC上時,如圖1,線段CE、BD的位置關系為___________,數量關系為___________
②當點D在線段BC的延長線上時,如圖2,①中的結論是否仍然成立,請說明理由.
(2)如圖3,如果AB≠AC,∠BAC≠90°,點D在線段BC上運動。探究:當∠ACB多少度時,CE⊥BC?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調查發(fā)現,若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.
(1)甲、乙兩種書柜每個的價格分別是多少元?
(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數量不少于甲種書柜的數量,學校至多能夠提供資金4320元,請設計幾種購買方案供這個學校選擇.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A,B,C,D,請按要求畫出圖形.
(1)畫直線AB和射線CB;
(2)連結AC,并在直線AB上用尺規(guī)作線段AE,使.(要求保留作圖痕跡)
(3)在直線AB上確定一點P,使的和最短,并寫出畫圖的依據.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”。
(1)概念理解:
如圖1,在中, ,.,試判斷是否是“等高底”三角形,請說明理由.
(2)問題探究:
如圖2, 是“等高底”三角形,是“等底”,作關于所在直線的對稱圖形得到,連結交直線于點.若點是的重心,求的值.
(3)應用拓展:
如圖3,已知,與之間的距離為2.“等高底”的“等底” 在直線上,點在直線上
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用小立方塊搭一個幾何體,使它從正面、上面看到的形狀圖如圖所示,從上面看到的形狀圖的小正方形中的字母表示在該位置小立方塊的個數.試回答下列問題:
(1)a,b,c各表示幾?
(2)這個幾何體最少有幾個小立方塊搭成?最多呢?
(3)當d=e=1,f=2時,畫出這個幾何體從左面看到的形狀圖.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,頂點為A(,1)的拋物線經過坐標原點O,與x軸交于點B.
(1)求拋物線對應的二次函數的表達式;
(2)過B作OA的平行線交y軸于點C,交拋物線于點D,求證:△OCD≌△OAB;
(3)在x軸上找一點P,使得△PCD的周長最小,求出P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若代數式(4x2-mx-3y+4)-(8nx2-x+2y-3)的值與字母x的取值無關,求代數式(-m2+2mn-n2)-2(mn-3m2)+3(2n2-mn)的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com