【題目】綜合與探究
如圖,已知拋物線y=ax2﹣3x+c與y軸交于點(diǎn)A(0,﹣4),與x軸交于點(diǎn)B(4,0),點(diǎn)P是線段AB下方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求這條拋物線的表達(dá)式及其頂點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P移動(dòng)到拋物線的什么位置時(shí),∠PAB=90°求出此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB下方的拋物線向終點(diǎn)B移動(dòng),在移動(dòng)中,設(shè)點(diǎn)P的橫坐標(biāo)為t,△PAB的面積為S,求S關(guān)于t的函數(shù)表達(dá)式,并求t為何值時(shí)S有最大值,最大值是多少?
【答案】(1)y=x2﹣3x﹣4,(2)(2,﹣6);(3)當(dāng)t=2時(shí),S取得最大值,最大值為8.
【解析】
(1)根據(jù)點(diǎn)A,B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式,再利用配方法即可求出拋物線的頂點(diǎn)坐標(biāo);
(2)過(guò)點(diǎn)P作PQ⊥OA于點(diǎn)Q,由OA=OB結(jié)合∠PAB=90°可得出∠PAQ=45°,進(jìn)而可得出AQ=PQ,設(shè)點(diǎn)P的坐標(biāo)為(m,m2﹣3m﹣4),由點(diǎn)A的坐標(biāo)結(jié)合AQ=PQ可得出關(guān)于m的一元二次方程,解之取其正值即可得出結(jié)論;
(3)根據(jù)點(diǎn)A,B的坐標(biāo),利用待定系數(shù)法即可求出直線AB的解析式,過(guò)點(diǎn)P作PM⊥x軸,垂足為點(diǎn)M,由點(diǎn)P的橫坐標(biāo)為t可得出點(diǎn)P,M的坐標(biāo),進(jìn)而可得出PM的長(zhǎng),由S△PAB=S梯形OAPM+S△PBM﹣S△AOB可得出S關(guān)于t的函數(shù)表達(dá)式,再利用二次函數(shù)的性質(zhì)即可解決最值問(wèn)題.
(1)將A(0,﹣4),B(4,0)代入y=ax2﹣3x+c,得:
,解得:,
∴拋物線的解析式為y=x2﹣3x﹣4.
∵,
∴拋物線的頂點(diǎn)坐標(biāo)為.
(2)過(guò)點(diǎn)P作PQ⊥OA于點(diǎn)Q,如圖1所示.
∵OA=OB,
∴∠OAB=45°.
又∵∠PAB=90°,
∴∠PAQ=45°,
∴AQ=PQ.
設(shè)點(diǎn)P的坐標(biāo)為(m,m2﹣3m﹣4),
∴m=﹣4﹣(m2﹣3m﹣4),
解得:m1=0(舍去),m2=2,
∴點(diǎn)P的坐標(biāo)為(2,﹣6).
(3)設(shè)直線AB的解析式為y=kx+b(k≠0),
將A(0,﹣4),B(4,0)代入y=kx+b,得:
,解得:,
∴直線AB的解析式為y=x﹣4.
過(guò)點(diǎn)P作PM⊥x軸,垂足為點(diǎn)M,如圖2所示.
∵點(diǎn)P的坐標(biāo)為(t,t2﹣3t﹣4),
∴點(diǎn)M的坐標(biāo)為(t,0),
∴PM=﹣t2+3t+4
∴S△PAB=S梯形OAPM+S△PBM﹣S△AOB,
=(OA+PM)OM+PMBM﹣OAOB,
= [4+(﹣t2+3t+4)]t+(﹣t2+3t+4)(4﹣t)﹣×4×4,
=﹣2t2+8t,
即S=﹣2t2+8t(0≤t≤4).
S=﹣2t2+8t=﹣2(t﹣2)2+8,
∵﹣2<0,
∴當(dāng)t=2時(shí),S取得最大值,最大值為8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò),兩點(diǎn),且與軸交于點(diǎn),點(diǎn)是拋物線的頂點(diǎn),拋物線的對(duì)稱軸交軸于點(diǎn),連接.
(1)求經(jīng)過(guò),,三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)是線段上一點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,過(guò)點(diǎn)作軸于點(diǎn),為拋物線上一動(dòng)點(diǎn),為軸上一動(dòng)點(diǎn),為直線上一動(dòng)點(diǎn),當(dāng)以、、、為頂點(diǎn)的四邊形是正方形時(shí),請(qǐng)求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)傳統(tǒng)文化,某校開(kāi)展了“傳承經(jīng)典文化,閱讀經(jīng)典名著”活動(dòng).為了解七、八年級(jí)學(xué)生(七、八年級(jí)各有600名學(xué)生)的閱讀效果,該校舉行了經(jīng)典文化知識(shí)競(jìng)賽.現(xiàn)從兩個(gè)年級(jí)各隨機(jī)抽取20名學(xué)生的競(jìng)賽成績(jī)(百分制)進(jìn)行分析,過(guò)程如下:
收集數(shù)據(jù):
七年級(jí):79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年級(jí):92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理數(shù)據(jù):
七年級(jí) | 0 | 1 | 0 | a | 7 | 1 |
八年級(jí) | 1 | 0 | 0 | 7 | b | 2 |
分析數(shù)據(jù):
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級(jí) | 78 | 75 | |
八年級(jí) | 78 | 80.5 |
應(yīng)用數(shù)據(jù):
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估計(jì)該校七、八兩個(gè)年級(jí)學(xué)生在本次競(jìng)賽中成績(jī)?cè)?/span>90分以上的共有多少人?
(3)你認(rèn)為哪個(gè)年級(jí)的學(xué)生對(duì)經(jīng)典文化知識(shí)掌握的總體水平較好,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l:y=kx+b(k≠0)與反比例函數(shù)y的圖象的一個(gè)交點(diǎn)為M(1,m).
(1)求m的值;
(2)直線l與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,連接OM,設(shè)△AOB的面積為S1,△MOB的面積為S2,若S1≥3S2,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)的圖象相交于點(diǎn)A(﹣4,2),B(n,﹣4)
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫(xiě)出不等式y1<y2的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的直徑,為上一點(diǎn),連接,過(guò)作于點(diǎn),過(guò)點(diǎn)作,其中交的延長(zhǎng)線于點(diǎn).
(1)求證:是的切線.
(2)如圖,點(diǎn)在上,且滿足,連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn).
①試探究線段與之間滿足的數(shù)量關(guān)系.
②若,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《孫子算經(jīng))是我國(guó)傳統(tǒng)數(shù)學(xué)的重要著作之一,其中記載的“蕩杯問(wèn)題”非常有趣.原題是今有婦人河上蕩杯,津吏問(wèn)日:“杯何以多?”婦人日:“有客.”津吏日:“客幾何?”婦人日:“兩人共飯,三人共羹,四人共肉,凡用杯六十五.不知客幾何?”
大意:一個(gè)婦女在河邊洗碗,河官問(wèn):“洗多少碗?有多少客?”婦女答:“洗只碗,客人二人.共用一只飯碗,三人共用一只湯碗,四人共用一只肉碗.問(wèn):有多少客人用餐?”請(qǐng)解答上述問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)(為常數(shù)).
(1)求證:不論為何值,該二次函數(shù)的圖像與軸總有公共點(diǎn).
(2)求證:不論為何值,該二次函數(shù)的圖像的頂點(diǎn)都在函數(shù)的圖像上.
(3)已知點(diǎn)、,線段與函數(shù)的圖像有公共點(diǎn),則的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,為的平分線,點(diǎn)在上,經(jīng)過(guò)點(diǎn),兩點(diǎn),與,分別交于點(diǎn),.
(1)求證:與相切;
(2)若,,求的半徑和的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com