A. | ①② | B. | ①②③ | C. | ①②④ | D. | ①②③④ |
分析 證明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到,故結(jié)論①正確;由△OBO′是等邊三角形,可知結(jié)論②正確;在△AOO′中,三邊長為6,8,10,這是一組勾股數(shù),故△AOO′是直角三角形;進而求得∠AOB=150°,故結(jié)論③正確;S四邊形AOBO′=S△AOO′+S△OBO可對稱④作出判斷.
解答 解:由題意可知,∠1+∠2=∠3+∠2=60°,
∴∠1=∠3.
又∵OB=O′B,AB=BC,
∴△BO′A和△BOC中$\left\{\begin{array}{l}{OB=O′B}\\{∠1=∠3}\\{AB=BC}\end{array}\right.$.
∴△BO′A≌△BOC(SAS).
又∵∠OBO′=60°,
∴△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到.
故結(jié)論①正確;
如圖所示:連接OO′.
∵OB=O′B,且∠OBO′=60°,
∴△OBO′是等邊三角形,
∴OO′=OB=8.
故結(jié)論②正確;
∵△BO′A≌△BOC,
∴O′A=10.
在△AOO′中,三邊長為6,8,10,這是一組勾股數(shù),
∴△AOO′是直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,
故結(jié)論③正確;
S四邊形AOBO′=S△AOO′+S△OBO′=$\frac{1}{2}$×6×8+$\frac{1}{2}$×8×$4\sqrt{3}$=24+16$\sqrt{3}$,故結(jié)論④錯誤.
綜上所述,正確的結(jié)論為:①②③.
故選:B.
點評 本題考查了旋轉(zhuǎn)變換中等邊三角形,直角三角形的性質(zhì).利用勾股定理的逆定理,判定勾股數(shù)6、10、10所構(gòu)成的三角形是直角三角形是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 8.1×10-9m | B. | 8.1×10-8m | C. | 81×10-9m | D. | 0.81×10-7m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x≠5 | B. | x≠3 | C. | x≥3 | D. | x≥3 且 x≠5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com