【題目】在平面直角坐標(biāo)系中,已知Aa,0),B0b)且a,b滿(mǎn)足,

點(diǎn)P在線段AB上(含端點(diǎn))的一點(diǎn),連接OP。

1)若AB=,且△OBP是以OB為腰長(zhǎng)的等腰三角形,求BP的長(zhǎng);

2)如圖1,過(guò)點(diǎn)AAQx軸(Qx軸上方),且滿(mǎn)足∠OPQ=90°,求證:OP=PQ;

3)如圖2C,D分別為OA,OB上的兩點(diǎn),且OC=OD,點(diǎn)P滿(mǎn)足OPAD,過(guò)點(diǎn)P

PEBCAD的延長(zhǎng)線于點(diǎn)E,試探究AE,OP,PE之間的數(shù)量關(guān)系,并給出證明。

【答案】(1)6或 (2)證明見(jiàn)解析 (3)答案見(jiàn)解析

【解析】

1)根據(jù)已知求出AB點(diǎn)的坐標(biāo),分別討論當(dāng)OB=OP=6時(shí),當(dāng)OB=BP時(shí)求出BP即可;

2)過(guò)點(diǎn)PPNOA,過(guò)點(diǎn)PPMAQ交延長(zhǎng)線于點(diǎn)M,通過(guò)證明四邊形PNAM為矩形得出PM=AN,再求出,根據(jù)得出90°,再證明PNOPMQ即可證明OP=PQ;

3)過(guò)點(diǎn)AAQX軸與EP延長(zhǎng)線交于點(diǎn)Q,證明BOCAOD,則有,根據(jù)兩銳角互余證明,根據(jù)平行得出角相等,則,證明AOPAQP,得出OP=PQ,則可證AE=PE+OP.

解:Aa,0),B0,b)且ab滿(mǎn)足

∴a=6,b=6

A6,0),B0,6

1)當(dāng)OB=OP=6時(shí),

此時(shí)P點(diǎn)與A點(diǎn)重合,即BP=AB=

當(dāng)OB=BP時(shí),即BP=6

BP=6;

2)過(guò)點(diǎn)PPNOA,過(guò)點(diǎn)PPMAQ交延長(zhǎng)線于點(diǎn)M

軸,PMAM

°

四邊形PNAM為矩形,即PM=AN

為等腰直角三角形,即45°

為等腰直角三角形,即

°

90°

PNOPMQ

∴PNOPMQ

∴OP=PQ

3AE=PE+OP,理由如下:

過(guò)點(diǎn)AAQX軸與EP延長(zhǎng)線交于點(diǎn)Q

BOCAOD

∴BOCAOD

AOPAQP

AOPAQP

OP=PQ

AE=PE+OP

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度.

(1)畫(huà)出ABC向上平移6個(gè)單位得到的A1B1C1;

(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫(huà)出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比為2:1,并直接寫(xiě)出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按指定的方法解方程:

(1)9(x﹣1)2﹣5=0(直接開(kāi)平方法)

(2)2x2﹣4x﹣8=0(配方法)

(3)6x2﹣5x﹣2=0(公式法)

(4)(x+1)2=2x+2(因式分解法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線y經(jīng)過(guò)ABCD的頂點(diǎn)B,D.點(diǎn)D的坐標(biāo)為(2,1),點(diǎn)Ay軸上,且ADx軸,SABCD=5.

(1)填空:點(diǎn)A的坐標(biāo)為_(kāi)_______;

(2)求雙曲線和AB所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=AC,點(diǎn)D在邊AC上,將△ABD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到△CBE,連接ED并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)F.

(1)求證:∠CDE=ABD;

(2)探究線段AD,CD,BE之間的數(shù)量關(guān)系,并說(shuō)明理由;

(3)若AD=1,CD=3,求線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=(x-m)2-(x-m),其中m是常數(shù).

(1)求證:不論m為何值,該拋物線與x軸一定有兩個(gè)公共點(diǎn);

(2)若該拋物線的對(duì)稱(chēng)軸為直線x=.

①求該拋物線的函數(shù)解析式;

②把該拋物線沿y軸向上平移多少個(gè)單位長(zhǎng)度后,得到的拋物線與x軸只有一個(gè)公共點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店銷(xiāo)售某款童裝,每件售價(jià)60元,每星期可賣(mài)300件,為了促銷(xiāo),該網(wǎng)店決定降價(jià)銷(xiāo)售.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣(mài)30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷(xiāo)售量為y件.

1)求yx之間的函數(shù)關(guān)系式;

2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)多少元?

3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤(rùn),每星期至少要銷(xiāo)售該款童裝多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(0,2)、(4,0),點(diǎn)P是直線y=2x+2上的一動(dòng)點(diǎn),當(dāng)以P為圓心,PO為半徑的圓與AOB的一條邊所在直線相切時(shí),點(diǎn)P的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD由四個(gè)相同的大長(zhǎng)方形,四個(gè)相同的小長(zhǎng)形以及一個(gè)小正方形組成,其中四個(gè)大長(zhǎng)方形的長(zhǎng)和寬分別是小長(zhǎng)方形長(zhǎng)和寬的2倍,若中間小正方形的面積為1,則大正方形ABCD的面積是(

A.36B.25C.20D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案