【題目】在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且∠EAF=∠CEF=45°.
(1)將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG(如圖①),求證:△AEG≌△AEF;
(2)若直線EF與AB,AD的延長線分別交于點M,N(如圖②),求證:EF2=ME2+NF2;
(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.
【答案】證明見解析
【解析】
試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可知AF=AG,∠EAF=∠GAE=45°,故可證△AEG≌△AEF;
(2)將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.由(1)知△AEG≌△AEF,則EG=EF.再由△BME、△DNF、△CEF均為等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后證明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代換即可證明EF2=ME2+NF2;
(3)將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADF≌△ABG,則DF=BG,再證明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代換得到EF=BE+DF.
試題解析:(1)∵△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,
∴AF=AG,∠FAG=90°,
∵∠EAF=45°,
∴∠GAE=45°,
在△AGE與△AFE中,
,
∴△AGE≌△AFE(SAS);
(2)設(shè)正方形ABCD的邊長為a.
將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.
則△ADF≌△ABG,DF=BG.
由(1)知△AEG≌△AEF,
∴EG=EF.
∵∠CEF=45°,
∴△BME、△DNF、△CEF均為等腰直角三角形,
∴CE=CF,BE=BM,NF=DF,
∴a﹣BE=a﹣DF,
∴BE=DF,
∴BE=BM=DF=BG,
∴∠BMG=45°,
∴∠GME=45°+45°=90°,
∴EG2=ME2+MG2,
∵EG=EF,MG=BM=DF=NF,
∴EF2=ME2+NF2;
(3)EF2=2BE2+2DF2.
如圖所示,延長EF交AB延長線于M點,交AD延長線于N點,
將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△AGH,連結(jié)HM,HE.
由(1)知△AEH≌△AEF,
則由勾股定理有(GH+BE)2+BG2=EH2,
即(GH+BE)2+(BM﹣GM)2=EH2
又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,
即2(DF2+BE2)=EF2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用長為22米的籬笆,一面利用墻(墻的最大可用長度為14米),圍成中間隔有一道籬笆的長方形花圃,為了方便出入,在建造籬笆花圃時,在BC上用其他材料做了寬為1米的兩扇小門.
(1)設(shè)花圃的一邊AB長為x米,請你用含x的代數(shù)式表示另一邊AD的長為 米;
(2)若此時花圃的面積剛好為45m2,求此時花圃的長與寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在8×8的正方形網(wǎng)格中,△CAB和△DEF的頂點都在邊長為1的小正方形的頂點上.
(1)填空:AC=________,AB=________;
(2)判斷△CAB和△DEF是否相似,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 三角形可以分為等邊三角形、直角三角形、鈍角三角形
B. 如果一個三角形的一個外角大于與它相鄰的內(nèi)角,則這個三角形為銳角三角形
C. 各邊都相等的多邊形是正多邊形
D. 五邊形有五條對角線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,某超市從一樓到二樓有一自動扶梯,圖②是側(cè)面示意圖.已知自動扶梯AB的坡度為1∶2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為42°,則二樓的層高BC約為(精確到0.1米,sin42°≈0.67,tan42°≈0.90)( )
A. 10.8米 B. 8.9米 C. 8.0米 D. 5.8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩校分別有一男一女共4名教師報名到農(nóng)村中學(xué)支教.
(1)若從甲、乙兩校報名的教師中分別隨機選1名,則所選的2名教師性別相同的概率是 .
(2)若從報名的4名教師中隨機選2名,用列表或畫樹狀圖的方法求出這2名教師來自同一所學(xué)校的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com