【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,ADCD于點(diǎn)D,且AC平分∠DAB,求證:

(1)直線DC是⊙O的切線;

(2)AC2=2ADAO.

【答案】(1)證明見解析.(2)證明見解析.

【解析】(1)連接OC,由OA=OC、AC平分∠DAB知∠OAC=OCA=DAC,據(jù)此知OCAD,根據(jù)ADDC即可得證;

(2)連接BC,證DAC∽△CAB即可得.

1)如圖,連接OC,

OA=OC,

∴∠OAC=OCA,

AC平分∠DAB,

∴∠OAC=DAC,

∴∠DAC=OCA,

OCAD,

又∵ADCD,

OCDC,

DC是⊙O的切線;

(2)連接BC,

AB為⊙O的直徑,

AB=2AO,ACB=90°,

ADDC,

∴∠ADC=ACB=90°,

又∵∠DAC=CAB,

∴△DAC∽△CAB,

,即AC2=ABAD,

AB=2AO,

AC2=2ADAO.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:

abc>0;3a+c<0;a+b≥am2+bm;a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.

其中正確的有( 。﹤(gè).

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)村盛產(chǎn)葡萄,果大味美,甲、乙兩個(gè)葡萄采摘園為吸引游客,在銷售價(jià)格一樣的基礎(chǔ)上分別推出優(yōu)惠方案,甲采摘園的優(yōu)惠方案:游客進(jìn)園需購買門票,采摘的所有葡萄按六折優(yōu)惠.乙采摘園的優(yōu)惠方案:游客無需買票,采摘葡萄超過一定數(shù)量后,超過的部分打折銷售.活動(dòng)期間,某游客的葡萄采摘量為xkg,若在甲采摘園所需總費(fèi)用為y元,若在乙采摘園所需總費(fèi)用為y元,y、yx之間的函數(shù)圖象如圖所示,則下列說法錯(cuò)誤的是(

A.甲采摘園的門票費(fèi)用是60

B.兩個(gè)采摘園優(yōu)惠前的葡萄價(jià)格是30/千克

C.乙采摘園超過10kg后,超過的部分價(jià)格是12/千克

D.若游客采摘18kg葡萄,那么到甲或乙兩個(gè)采摘園的總費(fèi)用相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長(zhǎng)度的半圓,,組成一條平滑的曲線.點(diǎn)從原點(diǎn)出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒個(gè)單位長(zhǎng)度,則第2002秒時(shí)點(diǎn)的坐標(biāo)為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“春節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“湯圓”的習(xí)俗.某食品廠為了解市民對(duì)去年銷量較好的肉餡(A)、豆沙餡 (B)、菜餡(C)、三丁餡 (D)四種不同口味湯圓的喜愛情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).請(qǐng)根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民人數(shù)是   人;

(2)將圖 ①②補(bǔ)充完整;( 直接補(bǔ)填在圖中)

(3)求圖中表示“A”的圓心角的度數(shù);

(4)若居民區(qū)有8000人,請(qǐng)估計(jì)愛吃D湯圓的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)同時(shí)挖掘兩段長(zhǎng)度相等的隧道,如圖是甲、乙兩隊(duì)挖掘隧道長(zhǎng)度()與挖掘時(shí)間(時(shí))之間關(guān)系的部分圖象.請(qǐng)解答下列問題:

在前小時(shí)的挖掘中,甲隊(duì)的挖掘速度為 /小時(shí),乙隊(duì)的挖掘速度為 /小時(shí).

①當(dāng)時(shí),求出之間的函數(shù)關(guān)系式;

②開挖幾小時(shí)后,兩工程隊(duì)挖掘隧道長(zhǎng)度相差?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,EBC邊的中點(diǎn),連接AEFCD邊上一點(diǎn),且滿足∠DFA=2BAE

1)若∠D=105°DAF=35°.求∠FAE的度數(shù);

2)求證:AF=CD+CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如下圖,AEABBCAB,AEABEDAC

求證:(1)ADEBCA;

(2)EDAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B的坐標(biāo)為(3,1),點(diǎn)C的坐標(biāo)為(43),如果要使△ABD與△ABC全等,那么點(diǎn)D的坐標(biāo)是_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案