【題目】小學(xué)時(shí)候大家喜歡玩的幻方游戲,老師稍加創(chuàng)新改成了幻圓游戲,現(xiàn)在將﹣1、2、﹣3、4、﹣5、6、﹣7、8分別填入圖中的圓圈內(nèi),使橫、豎以及內(nèi)外兩圈上的4個(gè)數(shù)字之和都相等,老師已經(jīng)幫助同學(xué)們完成了部分填空,則圖中a+b的值為( 。

A. 6或﹣3 B. 81 C. 1或﹣4 D. 1或﹣1

【答案】A

【解析】

由于八個(gè)數(shù)的和是4,所以需滿足兩個(gè)圈的和是2,橫、豎的和也是2.列等式可得結(jié)論.

解:設(shè)小圈上的數(shù)為c,大圈上的數(shù)為d

1+23+45+67+84,

∵橫、豎以及內(nèi)外兩圈上的4個(gè)數(shù)字之和都相等,

∴兩個(gè)圈的和是2,橫、豎的和也是2

則﹣7+6+b+82,得b=﹣5,

6+4+b+c2,得c=﹣3,

a+c+4+d2a+d1,

∵當(dāng)a=﹣1時(shí),d2,則a+b=﹣15=﹣6,

當(dāng)a2時(shí),d=﹣1,則a+b25=﹣3,

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD中,P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)PA、C不重合),連接BP,將BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°BQ;連接PQ,PQBC交于點(diǎn)E,QP延長線與AD(或AD延長線)交于點(diǎn)F,連接CQ.求證:

(1)CQ=AP;

(2)APB∽△CEP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是線段AB的中點(diǎn),CEB上一點(diǎn),AC12,

1)若ECCB14,求AB的長;

2)若FCB的中點(diǎn),求EF長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填入相應(yīng)集合的括號(hào)內(nèi)

+8.5, 0, -3.4, 12, -9 , 3.1415, -1.2,,

1)正數(shù)集合

2)整數(shù)集合

3)負(fù)分?jǐn)?shù)集合

4)非正整數(shù)集合{

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,(1)個(gè)圖形中面積為1的正方形有2個(gè),(2)個(gè)圖形中面積為1的正方形有5個(gè),(3)個(gè)圖形中面積為1的正方形有9個(gè),…,按此規(guī)律。則第(6)個(gè)圖形中面積為1的正方形的個(gè)數(shù)為()

A. 20B. 25C. 35D. 27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,ECD上一點(diǎn),FBC延長線上一點(diǎn),CE=CF.

(1)△DCF可以看作是△BCE繞點(diǎn)C旋轉(zhuǎn)某個(gè)角度得到的嗎?

(2)若∠CEB=60°,求∠EFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)﹣20+(﹣14)﹣(﹣18)﹣13;

2;

3;

4)﹣14(﹣22+6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD

(1)、求證:四邊形AODE是矩形;(2)、若AB6,∠BCD120°,求四邊形AODE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】星光中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊的長為x米.

(1)若平行于墻的一邊長為y米,直接寫出y與x的函數(shù)關(guān)系式及其自變量x的取值范圍;

(2)垂直于墻的一邊的長為多少米時(shí),這個(gè)苗圃園的面積最大,并求出這個(gè)最大值;

(3)當(dāng)這個(gè)苗圃園的面積不小于88平方米時(shí),試結(jié)合函數(shù)圖象,直接寫出x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案