【題目】南中國海是中國固有領海,我漁政船經常在此海域執(zhí)勤巡察.一天我漁政船停在小島A北偏西37°方向的B處,觀察A島周邊海域.據測算,漁政船距A島的距離AB長為10海里.此時位于A島正西方向C處的我漁船遭到某國軍艦的襲擾,船長發(fā)現在其北偏東50°的方向上有我方漁政船,便發(fā)出緊急求救信號.漁政船接警后,立即沿BC航線以每小時30海里的速度前往救助,問漁政船大約需多少分鐘能到達漁船所在的C處?
(參考數據:sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77)
【答案】約25分鐘
【解析】解:過B點作BD⊥AC,垂足為D。
根據題意,得:∠ABD=∠BAM=37°,∠CBD=∠BCN=50°。
在Rt△ABD中,∵cos∠ABD=,∴cos37○=≈0.80。
∴BD≈10×0.8=8(海里)。
在Rt△CBD中,∵cos∠CBD=,∴cos50○=≈0.64。
∴BC≈8÷0.64=12.5(海里)。
∴12.5÷30=(小時)。∴×60=25(分鐘)。
答:漁政船約25分鐘到達漁船所在的C處。
過B點作BD⊥AC,垂足為D,根據題意,得:∠ABD=∠BAM=37°,∠CBD=∠BCN=50°,然后分別在Rt△ABD與Rt△CBD中,利用余弦函數求得BD與BC的長,從而求得答案,
科目:初中數學 來源: 題型:
【題目】兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點重合在點O處,AB=25,CD=17.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉α(0°<α<90°)角度,如圖2所示.
(1)利用圖2證明AC=BD且AC⊥BD;
(2)當BD與CD在同一直線上(如圖3)時,求AC的長和α的正弦值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為6的正方形ABCD內部有一點P,BP=4,∠PBC=60°,點Q為正方形邊上一動點,且△PBQ是等腰三角形,則符合條件的Q點有__________個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下列各式:
=1+ ﹣ =1
=1+ ﹣ =1
=1+ ﹣ =1
請你根據上面三個等式提供的信息,猜想:
(1) =
(2)請你按照上面每個等式反映的規(guī)律,寫出用n(n為正整數)表示的等式:;
(3)利用上述規(guī)律計算: (仿照上式寫出過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線與y軸交于C點,與x軸交于A、B兩點,點A的坐標是(-1,0),O是坐標原點,且.
(1)求拋物線的函數表達式;
(2)直接寫出直線BC的函數表達式;
(3)如圖1,D為y軸的負半軸上的一點,且OD=2,以OD為邊作正方形ODEF.將正方形ODEF以每秒1個單位的速度沿x軸的正方向移動,在運動過程中,設正方形ODEF與△OBC重疊部分的面積為s,運動的時間為t秒(0<t≤2).求:①s與t之間的函數關系式; ②在運動過程中,s是否存在最大值?如果存在,直接寫出這個最大值;如果不存在,請說明理由.
(4)如圖2,點P(1,k)在直線BC上,點M在x軸上,點N在拋物線上,是否存在以A、M、N、P為頂點的平行四邊形?若存在,請直接寫出M點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將二次函數y=x2的圖象向右平移一個單位長度,再向下平移3個單位長度所得的圖象解析式為( )
A.y=(x﹣1)2+3B.y=(x+1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】暴雨過后,某地遭遇山體滑坡,武警總隊派出一隊武警戰(zhàn)士前往搶險. 半小時后,第二隊前去支援,平均速度是第一隊的1.5倍,結果兩隊同時到達.已知搶險隊的出發(fā)地與災區(qū)的距離為90千米,兩隊所行路線相同,問兩隊的平均速度分別是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com