【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),其對稱軸為直線x=1,下面結論中正確的有_____個.①abc>0,②2a﹣b=0,③4a+2b+c<0,④9a+3b+c=0
【答案】1
【解析】
由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.
解:①函數(shù)的對稱軸在y軸右側,則ab<0,而c>0,故abc<0,故原答案錯誤,不符合題意;
②函數(shù)的對稱軸為:x=﹣=1,故2a+b=0,故原答案錯誤,不符合題意;
③圖象與x軸交于點A(﹣1,0),其對稱軸為直線x=1,則圖象與x軸另外一個交點坐標為:(3,0),故當x=2時,y=4a+2b+c>0,故原答案錯誤,不符合題意;
④圖象與x軸另外一個交點坐標為:(3,0),即x=3時,y=9a+3b+c=0,正確,符合題意;
故答案為:1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y1=x2+bx+c與y2=x2+cx+b(b<c)的圖象相交于點A,分別與y軸相交于點C,B,連接AB、AC.
(1)過點(1,0)作直線l平行于y軸,判斷點A與直線l的位置關系,并說明理由.
(2)當A、C兩點是二次函數(shù)y1=x2+bx+c圖象上的對稱點時,求b的值.
(3)當△ABC是等邊三角形時,求點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠A=30°,在AB邊上取點D,以BD為直徑作⊙O,與AC邊切于點F,交BC邊于點E.
(1)若BC=3,求⊙O的半徑;
(2)①連接OF、EF,則四邊形OFEB的形狀為 ;
②寫出你的推斷過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,拋物線與軸交于點,與軸交于,兩點,點在點左側.點的坐標為,.
(1)求拋物線的解析式;
(2)當時,如圖所示,若點是第三象限拋物線上方的動點,設點的橫坐標為,三角形的面積為,求出與的函數(shù)關系式,并直接寫出自變量的取值范圍;請問當為何值時,有最大值?最大值是多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠A=90°,以AB為直徑的⊙O交BC于點D,點E在⊙O上, CE=CA,
AB,CE的延長線交于點F.
(1)求證:CE與⊙O相切;
(2)若⊙O的半徑為3,EF=4,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某燈飾商店銷售一種進價為每件20元的護眼燈.銷售過程中發(fā)現(xiàn),每月銷售量(件)與銷售單價(元)之間的關系可近似地看作一次函數(shù).物價部門規(guī)定該品牌的護眼燈售價不能超過36元.
(1)如果該商店想要每月獲得2000元的利潤,那么銷售單價應定為多少元?
(2)設該商店每月獲得利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點 A 逆時針旋轉得到矩形 AEFG,AE,F(xiàn)G 分別交射線CD 于點 PH,連結 AH,若 P 是 CH 的中點,則△APH 的周長為( )
A. 15 B. 18 C. 20 D. 24
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD的邊長為3,點E,F(xiàn)分別在射線DC,DA上運動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.
(1)如圖1,若點E是DC的中點,CH與AB之間的數(shù)量關系是 ;
(2)如圖2,當點E在DC邊上且不是DC的中點時,(1)中的結論是否成立?若成立給出證明;若不成立,說明理由;
(3)如圖3,當點E,F(xiàn)分別在射線DC,DA上運動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com