【題目】某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,時,

求一次函數(shù)的表達式;

若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

【答案】(1);(2)銷售單價定為元時,商場可獲得最大利潤,最大利潤是元.

【解析】

(1)根據(jù)題意將(65,55),(75,45)代入解二元一次方程組即可;(2)表示出利潤解析式,化成頂點式討論即可解題.

解:根據(jù)題意得

解得

所求一次函數(shù)的表達式為

(2)

,

拋物線的開口向下,

時,的增大而增大,

又因為獲利不得高于45%,60

所以,

時,

當銷售單價定為元時,商場可獲得最大利潤,最大利潤是元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O斜邊AB上的一點,以OA為半徑的BC切于點D,與AC交于點E,連接AD.

1)求證:AD平分

2)若,求陰影部分的面積.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、B分別在反比例函數(shù)yx0),y=﹣x0)的圖象上,且OAOB,則的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+ca≠0)與y軸交于點A,與x軸交于B,C兩點(點Cx軸正半軸上),△ABC為等腰直角三角形,且面積為4,現(xiàn)將拋物線沿BA方向平移,平移后的拋物線過點C時,與x軸的另一交點為E,其頂點為F

1)求a、c的值;

2)連接OF,試判斷△OEF是否為等腰三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點M(﹣2,﹣1),且P(﹣1,﹣2)為雙曲線上的一點,Q為坐標平面上一動點,PA垂直于x軸,QB垂直于y軸,垂足分別是A、B

1)寫出正比例函數(shù)和反比例函數(shù)的關系式;

2)當點Q在直線MO上運動時,直線MO上是否存在這樣的點Q,使得OBQOAP面積相等?如果存在,請求出點的坐標,如果不存在,請說明理由;

3)如圖2,當點Q在第一象限中的雙曲線上運動時,作以OP、OQ為鄰邊的平行四邊形OPCQ,求平行四邊形OPCQ周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要修一個圓形噴水池,在池中心豎直安裝一根水管,水管的頂端安一個噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達到最高,高度為3m,水柱落地處離池中心3m,水管應多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,對角線AC,BD交于點O,且ACBC,點EBC延長線上一點, ,連接DE.

(1)求證:四邊形ACED為矩形;

(2)連接OE,如果BD=10,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角ABC中,∠BAC=90°,DBC上,連接AD,作BFAD分別交ADE,交ACF

1)如圖(1),若BD=BA,求證:∠BAD=C+CAD;

2)如圖(2),若 BD=4DC,取AB 的中點G,連接CGADM,求證:①GM=2MC;②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖①,AB為⊙O的直徑,點P在⊙O上,過點PPQAB,垂足為點Q.說明APQ∽△ABP;

2)如圖②,⊙O的半徑為7,點P在⊙O上,點Q在⊙O內(nèi),且PQ4,過點QPQ的垂線交⊙O于點A、B.設PAx,PBy,求yx的函數(shù)表達式.

查看答案和解析>>

同步練習冊答案