【題目】如圖,在正方形ABCD中,AB10,點(diǎn)E在正方形內(nèi)部,且AEBEcotBAE2,如果以E為圓心,r為半徑的⊙E與以CD為直徑的圓相交,那么r的取值范圍為_____

【答案】

【解析】

設(shè)AB的中點(diǎn)為G,連接EG,延長BECDH,根據(jù)直角三角形的性質(zhì)得到EGAB5,根據(jù)三角函數(shù)的定義得到CHBCCD5,推出點(diǎn)H是以CD為直徑的圓的圓心,設(shè)BEk,AE2k,得到BE2,根據(jù)勾股定理得到BH5,求得EHBHBE3,于是得到結(jié)論.

解:設(shè)AB的中點(diǎn)為G,

連接EG,延長BECDH,

AEBE,

∴∠AEB90°,

EGAB5,

∵在正方形ABCD中,∠C=∠ABC90°,

∴∠BAE+ABE=∠ABE+CBH90°,

∴∠CBH=∠BAE,

cotBAEcotCBH2,

CHBCCD5,

∴點(diǎn)H是以CD為直徑的圓的圓心,

設(shè)BEk,AE2k,

ABk10,

k2

BE2

∵∠C90°,BC10,CH5,

BH5,

EHBHBE3

r為半徑的⊙E與以CD為直徑的圓相交,

r的取值范圍為,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖AB是圓O的直徑,射線AMAB于點(diǎn)A.點(diǎn)DAM上,連接OD交圓O于點(diǎn)E,過點(diǎn)DDC=DA.交圓O于點(diǎn)CA,C不重合),連接BC,CE

1)求證:CD是圓O的切線;

2)若四邊形OECB是菱形,圓O的直徑AB=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如今很多初中生喜歡購頭飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此某班數(shù)學(xué)興趣小組對本班同學(xué)一天飲用飲品的情況進(jìn)行了調(diào)查,大致可分為四種:A.白開水,B.瓶裝礦泉水,C.碳酸飲料,D.非碳酸飲料.根據(jù)統(tǒng)計(jì)結(jié)果繪制如下兩個統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題

1)這個班級有多少名同學(xué)?并補(bǔ)全條形統(tǒng)計(jì)圖;

2)若該班同學(xué)每人每天只飲用一種飲品(每種僅限一瓶,價格如下表),則該班同學(xué)每天用于飲品的人均花費(fèi)是多少元?

飲品名稱

白開水

瓶裝礦泉水

碳酸飲料

非碳酸飲料

平均價格(元/瓶)

0

2

3

4

3)為了養(yǎng)成良好的生活習(xí)慣,班主任決定在飲用白開水的5名班委干部(其中有兩位班長記為A,B,其余三位記為C,D,E)中隨機(jī)抽取2名班委干部作良好習(xí)慣監(jiān)督員,請用列表法或畫樹狀圖的方法求出恰好抽到2名班長的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(34)

(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;

(2)請畫出△ABC關(guān)于原點(diǎn)O成中心對稱的圖形△A2B2C2

(3)x軸上找一點(diǎn)P,使PAPB的值最小,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,B=30°,AD是ABC的角平分線,DEBA交AC于點(diǎn)E,DFCA交AB于點(diǎn)F,已知CD=3.

(1)求AD的長;

(2)求四邊形AEDF的周長.(注意:本題中的計(jì)算過程和結(jié)果均保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線yax2+bx+3經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(30),該拋物線對稱軸上的點(diǎn)Px軸上方,線段PB繞著點(diǎn)P逆時針旋轉(zhuǎn)90°PC(點(diǎn)B對應(yīng)點(diǎn)C),點(diǎn)C恰好落在拋物線上.

1)求拋物線的表達(dá)式并寫出拋物線的對稱軸;

2)求點(diǎn)P的坐標(biāo);

3)點(diǎn)Q在拋物線上,聯(lián)結(jié)AC,如果∠QAC=∠ABC,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為進(jìn)一步推進(jìn)一校一球隊(duì)、一級一專項(xiàng)、一人一技能的體育活動,決定對學(xué)生感興趣的球類項(xiàng)目A足球,B籃球,C排球,D羽毛球E乒乓球進(jìn)行問卷調(diào)查,學(xué)生可根據(jù)自己的喜好選修一門李老師對某班全班同學(xué)的選課情況進(jìn)行統(tǒng)計(jì)后,制成了兩幅不完整的統(tǒng)計(jì)圖如圖).

(1)該班對足球和排球感興趣的人數(shù)分別是      ;

(2)若該校共有學(xué)生3500,請估計(jì)有多少人選修足球?

(3)該班班委5人中,1人選修籃球,3人選修足球,1人選修排球,李老師要從這5人中任選2人了解他們對體育選修課的看法,請你用列表或畫樹狀圖的方法,求選出的2人恰好1人選修籃球,1人選修足球的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:是長方形紙片ABCD折疊的情況,紙片的寬度AB=8cm,長AD=10cm,AD沿點(diǎn)A對折,點(diǎn)D正好落在BC上的M處,AE是折痕.

1)求CM的長;

2)求梯形ABCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一拱橋的橋拱是圓弧形,已知橋拱的水面跨度AB(弧所對的弦的長)為8米,拱高CD(弧的中點(diǎn)到弦的距離)為2米.

1)求橋拱所在圓的半徑長;

2)如果水面AB上升到EF時,從點(diǎn)E測得橋頂D的仰角為α,且cotα3,求水面上升的高度.

查看答案和解析>>

同步練習(xí)冊答案