【題目】閱讀下列兩則材料,回答問題:

材料一:因為所以我們將稱為一対有理化因式,有時我們可以通過構(gòu)造有理化因式求值

例如:已知,求的值

解:,∵

材料二:如圖,點Ax1,y1),點Bx2,y2),所以AB為斜邊作RtABC,則Cx2,y1),于是AC|x1x2|,BC|y1y2|,所以AB,反之,可將代數(shù)式的值看作點(x1y1)到點(x2,y2)的距離.例如,所以可將代數(shù)式的值看作點(x,y)到點(1,﹣1)的距離;

1)利用材料一,解關(guān)于x的方程:,其中x≤2;

2)利用材料二,求代數(shù)式的最小值,并求出此時yx的函數(shù)關(guān)系式,寫出x的取值范圍.

【答案】(1)x=﹣2;(2)yx+5(﹣3≤x≤1).

【解析】

1)根據(jù)材料一類比計算的值,利用換元法解方程,可得結(jié)論;

2)把根式下的式子轉(zhuǎn)化成平方+平方的形式,轉(zhuǎn)化成點到點的距離問題,根據(jù)兩點之間距離最短,所以當(dāng)三個點共線時距離最短,可以求出最小值和函數(shù)關(guān)系式.

解:(1,

,

設(shè),

,解得:,

,

x≤2

解得:x=﹣2;

2,

,

,

所以可將看作點(x,y)到點(1,6)的距離;

可將看作點(x,y)到點(﹣32)的距離;

∴當(dāng)代數(shù)式取最小值,

即點(xy)與點(1,6),(﹣3,2)在同一條直線上,并且點(x,y)位于點(16)、(﹣3,2)的中間,

的最小值=,且﹣3≤x≤1,

設(shè)過(x,y),(1,6),(﹣3,2)的直線解析式為:ykx+b,

,

解得:,

yx+5(﹣3≤x≤1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,∠B=90°,AB=12cm,AD=CD=8cm,動點E從點A出發(fā)沿AB以每秒1cm的速度向點B運動,動點F從點B出發(fā)沿BA以每秒1cm的速度向點A運動,過點EAB的垂線交折線AD-DC于點G,以EG、EF為鄰邊作矩形EFHG,設(shè)點E、F運動的時間為t(),矩形EFHG與四邊形ABCD重疊部分的面積為S(cm2).

(1)EG的長(用含t的代數(shù)式表示);

(2)當(dāng)t為何值時,點G與點D重合?

(3)當(dāng)點GDC上時,求S(cm2)t()的函數(shù)關(guān)系式(S>0);

(4)連接EH、GFAC、BD,在運動過程中,當(dāng)這四條線段所在的直線有兩條平行時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y圖象上一點,過點Ax軸的平行線交反比例函數(shù)y=﹣的圖象于點B,點Cx軸上,且SABC,則k=(  )

A. 6B. 6C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD 中,對角線 AC BD 相交于點 O ,點 E F 分別為 OB , OD 的中點,延長 AE G ,使 EG AE ,連接 CG

1)求證: ABE≌△CDF ;

2)當(dāng) AB AC 滿足什么數(shù)量關(guān)系時,四邊形 EGCF 是矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司銷售一種新型節(jié)能產(chǎn)品,現(xiàn)準(zhǔn)備從國內(nèi)和國外兩種銷售方案中選擇一種進行銷售.若只在國內(nèi)銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y=x+150,成本為20元/件,無論銷售多少,每月還需支出廣告費62500元,設(shè)月利潤為w內(nèi)(元).若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時,每月還需繳納x2元的附加費,設(shè)月利潤為w(元).

(1)當(dāng)x=1000時,y= 元/件,w內(nèi)= 元;

(2)分別求出w內(nèi),w與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);

(3)當(dāng)x為何值時,在國內(nèi)銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)學(xué)生會在開展厲行勤儉節(jié)約,反對鋪張浪費的主題教育活動中,在全校范圍內(nèi)隨機抽取了若干名學(xué)生就某日晚飯浪費飯菜情況進行調(diào)查,調(diào)查內(nèi)容分為四種:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩;D.飯和菜都有剩.學(xué)生會根據(jù)統(tǒng)計結(jié)果,繪制了如下統(tǒng)計表:根據(jù)所給信息,回答下列問題:

選項

頻數(shù)

頻率

A

36

m

B

n

0.2

C

6

0.1

D

6

0.1

(1)統(tǒng)計表中:m=______;n=______

(2)該中學(xué)有1800名學(xué)生晚飯在校就餐,根據(jù)調(diào)查結(jié)果,估計當(dāng)天晚飯有多少人能夠把飯和菜全部吃完?

(3)為了對同學(xué)們浪費的行為進行糾正,校學(xué)生會從飯和菜都有剩的甲、乙、丙、丁四名同學(xué)中任取2位同學(xué)進行批評教育,請用列表法或樹狀圖法求恰好抽到甲和丁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機抽樣的方法進行問卷調(diào)查每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門對調(diào)查結(jié)果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖請結(jié)合圖中所給信息解答下列問題:

本次調(diào)查的學(xué)生共有______人,在扇形統(tǒng)計圖中,m的值是______

分別求出參加調(diào)查的學(xué)生中選擇繪畫和書法的人數(shù),并將條形統(tǒng)計圖補充完整.

該校共有學(xué)生2000人,估計該校約有多少人選修樂器課程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在中,,點D、E分別是AB、AC的中點,點FBC延長線上,連接EF,且

如圖1,求證:四邊形CDEF是平行四邊形;

如圖2,連接AF、BE,在不添加任何輔助線的情況下,請直接寫出圖2中所有與面積相等的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)綜合實踐活動中,小明計劃測量城門大樓的高度,在點B處測得樓頂A的仰角為22°,他正對著城樓前進21米到達C處,再登上3米高的樓臺D處,并測得此時樓頂A的仰角為45°

1)求城門大樓的高度;

2)每逢重大節(jié)日,城門大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請你求出A,B之間所掛彩旗的長度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈

查看答案和解析>>

同步練習(xí)冊答案